Hamiltonian and Liouvillian learning in weakly-dissipative quantum many-body systems

被引:0
|
作者
Olsacher, Tobias [1 ,2 ]
Kraft, Tristan [1 ,3 ,4 ]
Kokail, Christian [1 ,2 ,5 ,6 ]
Kraus, Barbara [1 ,3 ,4 ]
Zoller, Peter [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Technikerstr 21A, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, Innsbruck, Austria
[3] Tech Univ Munich, TUM Sch Nat Sci, James Franck Str 1, D-85748 Garching, Germany
[4] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
[5] Harvard Smithsonian Ctr Astrophys, ITAMP, Cambridge, MA 02138 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2025年 / 10卷 / 01期
基金
奥地利科学基金会;
关键词
quantum simulation; Hamiltonian learning; Liouvillian learning; verification; MODEL;
D O I
10.1088/2058-9565/ad9ed5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss Hamiltonian and Liouvillian learning for analog quantum simulation from non-equilibrium quench dynamics in the limit of weakly dissipative many-body systems. We present and compare various methods and strategies to learn the operator content of the Hamiltonian and the Lindblad operators of the Liouvillian. We compare different ans & auml;tze based on an experimentally accessible 'learning error' which we consider as a function of the number of runs of the experiment. Initially, the learning error decreases with the inverse square root of the number of runs, as the error in the reconstructed parameters is dominated by shot noise. Eventually the learning error remains constant, allowing us to recognize missing ansatz terms. A central aspect of our approaches is to (re-)parametrize ans & auml;tze by introducing and varying the dependencies between parameters. This allows us to identify the relevant parameters of the system, thereby reducing the complexity of the learning task. Importantly, this (re-)parametrization relies solely on classical post-processing, which is compelling given the finite amount of data available from experiments. We illustrate and compare our methods with two experimentally relevant spin models.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Thermodynamics of quantum dissipative many-body systems
    Cuccoli, A
    Fubini, A
    Tognetti, V
    Vaia, R
    PHYSICAL REVIEW E, 1999, 60 (01): : 231 - 241
  • [2] Orthogonality Catastrophe in Dissipative Quantum Many-Body Systems
    Tonielli, F.
    Fazio, R.
    Diehl, S.
    Marino, J.
    PHYSICAL REVIEW LETTERS, 2019, 122 (04)
  • [3] The advantage of quantum control in many-body Hamiltonian learning
    Dutkiewicz, Alicja
    O'Brien, Thomas E.
    Schuster, Thomas
    QUANTUM, 2024, 8
  • [4] Relaxation times of dissipative many-body quantum systems
    Znidaric, Marko
    PHYSICAL REVIEW E, 2015, 92 (04):
  • [5] Strong and Weak Chaos in Weakly Nonintegrable Many-Body Hamiltonian Systems
    Mulansky, M.
    Ahnert, K.
    Pikovsky, A.
    Shepelyansky, D. L.
    JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (05) : 1256 - 1274
  • [6] Strong and Weak Chaos in Weakly Nonintegrable Many-Body Hamiltonian Systems
    M. Mulansky
    K. Ahnert
    A. Pikovsky
    D. L. Shepelyansky
    Journal of Statistical Physics, 2011, 145 : 1256 - 1274
  • [7] Hamiltonian tomography for quantum many-body systems with arbitrary couplings
    Wang, Sheng-Tao
    Deng, Dong-Ling
    Duan, L-M
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [9] Quantum jumps in driven-dissipative disordered many-body systems
    Gupta, Sparsh
    Yadalam, Hari Kumar
    Kulkarni, Manas
    Aron, Camille
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [10] Liouvillian-gap analysis of open quantum many-body systems in the weak dissipation limit
    Mori, Takashi
    PHYSICAL REVIEW B, 2024, 109 (06)