From G2 to SO(8): Emergence and reminiscence of supersymmetry and triality

被引:0
作者
Gao, Zhi-Qiang [1 ]
Wu, Congjun [2 ,3 ,4 ,5 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Westlake Univ, Sch Sci, Dept Phys, New Cornerstone Sci Lab, Hangzhou 310024, Zhejiang, Peoples R China
[3] Westlake Univ, Inst Theoret Sci, Hangzhou 310024, Zhejiang, Peoples R China
[4] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, Hangzhou 310024, Zhejiang, Peoples R China
[5] Westlake Inst Adv Study, Inst Nat Sci, Hangzhou 310024, Zhejiang, Peoples R China
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2025年 / 02期
基金
中国国家自然科学基金;
关键词
Field Theories in Lower Dimensions; Higher Spin Symmetry; Renormalization Group; Supersymmetry and Duality; SYMMETRY; EDGE;
D O I
10.1007/JHEP02(2025)202
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct a (1+1)-dimension continuum model of 4-component fermions incorporating the exceptional Lie group symmetry G2. Four gapped and five gapless phases are identified via the one-loop renormalization group analysis. The gapped phases are controlled by four different stable SO(8) Gross-Neveu fixed points, among which three exhibit an emergent triality, while the rest one possesses the self-triality, i.e., invariant under the triality mapping. The gapless phases include three SO(7) critical ones, a G2 critical one, and a Luttinger liquid. Three SO(7) critical phases correspond to different SO(7) Gross-Neveu fixed points connected by the triality relation similar to the gapped SO(8) case. The G2 critical phase is controlled by an unstable fixed point described by a direct product of the Ising and tricritical Ising conformal field theories with the central charges c = 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{1}{2} $$\end{document} and c = 710\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{7}{10} $$\end{document}, respectively, while the latter one is known to possess spacetime supersymmetry. In the lattice realization with a Hubbard-type interaction, the triality is broken into the duality between two SO(7) symmetries and the supersymmetric G2 critical phase exhibits the degeneracy between bosonic and fermionic states, which are reminiscences of the continuum model.
引用
收藏
页数:25
相关论文
共 38 条
[1]  
Agricola I., 2008, Not. Am. Math. Soc, V55, P922
[2]   Wavefunctions for topological quantum registers [J].
Ardonne, E. ;
Schoutens, K. .
ANNALS OF PHYSICS, 2007, 322 (01) :201-235
[3]  
Baez JC, 2002, B AM MATH SOC, V39, P145
[4]   Eight-dimensional quantum Hall effect and "octonions" [J].
Bernevig, BA ;
Hu, JP ;
Toumbas, N ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2003, 91 (23)
[5]   Adventure in Topological Phase Transitions in 3+1-D: Non-Abelian Deconfined Quantum Criticalities and a Possible Duality [J].
Bi, Zhen ;
Senthil, T. .
PHYSICAL REVIEW X, 2019, 9 (02)
[6]  
Bilal A., hep-th/0101055
[7]   Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E8 Symmetry [J].
Coldea, R. ;
Tennant, D. A. ;
Wheeler, E. M. ;
Wawrzynska, E. ;
Prabhakaran, D. ;
Telling, M. ;
Habicht, K. ;
Smeibidl, P. ;
Kiefer, K. .
SCIENCE, 2010, 327 (5962) :177-180
[8]   Lattice models with N=2 supersymmetry -: art. no. 120402 [J].
Fendley, P ;
Schoutens, K ;
de Boer, J .
PHYSICAL REVIEW LETTERS, 2003, 90 (12)
[9]   Effects of interactions on the topological classification of free fermion systems [J].
Fidkowski, Lukasz ;
Kitaev, Alexei .
PHYSICAL REVIEW B, 2010, 81 (13)
[10]  
Fradkin E., 2013, Field theories of condensed matter physics, DOI 10.1017/CBO9781139015509