Structure, thermal expansion, elastic modulus and dielectric properties of alkali-free boroaluminosilicate glasses with Bi2O3 substitution for CaO

被引:0
作者
Liu, Longbin [1 ]
Gao, Wenkai [1 ]
Kang, Zeyu [1 ]
Xi, Chuying [1 ]
Gao, Shang [1 ]
Tang, Yu [2 ]
Li, Yongyan [2 ]
Du, Fengling [2 ]
Yue, Yunlong [1 ]
Kang, Junfeng [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[2] Taishan Fiberglass Inc, Tai An 271000, Peoples R China
基金
中国国家自然科学基金;
关键词
PHYSICAL-PROPERTIES; VISCOSITY; OXIDES;
D O I
10.1007/s10854-025-14222-2
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, alkali-free boroaluminosilicate glasses with low thermal expansion coefficient and low dielectric loss were prepared. The effect of Bi2O3 substitution for CaO on structure, thermal expansion, elastic modulus, and dielectric properties of the samples was investigated by Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), thermal dilatometer, ultrasonic thickness gauge, and impedance analyzer. The results show that the polymerization degree of the glass network structure increases first and then decreases, which reaches the highest with the substitution of 0.5 mol% Bi2O3 for CaO. The thermal expansion coefficient and dielectric constant decrease and then increase, while elastic modulus shows the opposite trend, which is attributed to the change in the glass network structure. The atomic mass of Bi much greater than that of Ca causes the obvious increase of glass density. The ionic radius of Bi3+ ions is larger than that of Ca2+ ions, making it more difficult to migrate through the glass network, reducing dielectric loss. In particular, the sample with 0.5 mol% Bi2O3 substitution shows excellent properties, such as low thermal expansion coefficient (3.07 x 10-6/K), high elastic modulus (80.58 GPa), low dielectric constant (5.52), and dielectric loss (3.15 x 10-3), which is very suitable for use as chip packaging material.
引用
收藏
页数:10
相关论文
共 44 条
[1]   Effect of CeO2 on the Glass Structure of Sodium Germanate Glasses [J].
Alvarado-Rivera, Josefina ;
Rodriguez-Carvajal, David A. ;
Acosta-Enriquez, Milka del C. ;
Manzanares-Martinez, Maria B. ;
Alvarez, Enrique ;
Lozada-Morales, Rosendo ;
Diaz, Gerardo C. ;
de Leon, Aned ;
Zayas, Maria E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2014, 97 (11) :3494-3500
[2]   On the optimization of molding warpage for wafer-level glass interposer packaging [J].
Bao, Shuchao ;
Li, Wei ;
He, Yimin ;
Zhong, Yi ;
Zhang, Long ;
Yu, Daquan .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (12)
[3]   The role of trivalent element oxides in CaO (Na2O)-M2O3-SiO2 glasses from Tg [J].
Branda, F ;
Costantini, A ;
Luciani, G ;
Laudisio, G .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2001, 64 (03) :1017-1024
[4]   MIXED ALKALI EFFECTS IN IONIC CONDUCTORS - A NEW MODEL AND COMPUTER-SIMULATIONS [J].
BUNDE, A ;
INGRAM, MD ;
MAASS, P ;
NGAI, KL .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1991, 131 :1109-1112
[5]   Viscosity, fragility and structure of Na2O-CaO-Al2O3-SiO2 glasses of increasing Al/Si ratio [J].
Cheng, Jinshu ;
Xiao, Zifan ;
Yang, Kun ;
Wu, Hao .
CERAMICS INTERNATIONAL, 2013, 39 (04) :4055-4062
[6]   Effect of compositional changes on the structure and properties of alkali-alumino borosilicate glasses [J].
Darwish, H ;
Gomaa, MM .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2006, 17 (01) :35-42
[7]   Correlation of glass transition temperature and density with electrical conductivity of lithium sulfoborosilicate glasses [J].
Deshpande, A. V. ;
Deshpande, V. K. .
SOLID STATE IONICS, 2006, 177 (26-32) :2747-2751
[8]  
Dietzel A., 1968, GLASSTECH BERL, V22, P41, DOI DOI 10.1063/1.5130253
[9]   Classification of simple oxides: A polarizability approach [J].
Dimitrov, V ;
Komatsu, T .
JOURNAL OF SOLID STATE CHEMISTRY, 2002, 163 (01) :100-112
[10]   Network connectivity in aluminoborosilicate glasses:: A high-resolution 11B, 27Al and 17O NMR study [J].
Du, LS ;
Stebbins, JF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2005, 351 (43-45) :3508-3520