ConvNeXt embedded U-Net for semantic segmentation in urban scenes of multi-scale targets

被引:0
作者
Wu, Yanyan [1 ,2 ]
Li, Qian [2 ]
机构
[1] City Univ Macau, Macau 999078, Peoples R China
[2] Ningbo Univ Finance & Econ, Coll Digital Technol & Engn, Ningbo 315000, Zhejiang, Peoples R China
关键词
Urban scene semantic segmentation; Conv-UNet; Residual pyramid network; Spatial information interaction model;
D O I
10.1007/s40747-024-01735-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semantic segmentation of urban scenes is essential in urban traffic analysis and road condition information acquisition. The semantic segmentation model with good performance is the key to applying high-resolution urban locations. However, the types of these images are diverse, and the spatial relationships are complex. It is greatly affected by weather and light. Objects of different scales pose significant challenges to image segmentation of urban scenes. The existing semantic segmentation is mostly solved from the target scale and superpixel methods. Our research mainly fills the gap in image segmentation field of ConvNeXt fusion U-Net pyramid network model in specific urban scenes. These methods could be more accurate. Therefore, we propose the multi-scale fusion deformation residual pyramid network model method in this paper. This method captures features of different scales and effectively solves the problem of urban scene image segmentation of memory scenes by objects of different scales. We construct a spatial information interaction module to reduce the semantic ambiguity caused by complex spatial relations. By combining spatial and channel characteristics, a series of problems caused by weather and light can be alleviated. We verify the improved semantic segmentation model on the Cityscape dataset. The experimental results show that the method achieves 84.25% MPA and 75.61% MIoU. Our improved algorithm, ConvNeXt embedding in the U-Net algorithm architecture, is named Conv-UNet. The improved method proposed in this paper is superior to other methods in the semantic segmentation of urban scenes. The main advantage of this algorithm is to explore the specific loss function and segmentation strategy suitable for urban scene in the face of the complexity and diversity of urban scene images.
引用
收藏
页数:19
相关论文
共 40 条
  • [1] Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks
    Alshehhi, Rasha
    Marpu, Prashanth Reddy
    Woon, Wei Lee
    Dalla Mura, Mauro
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 130 : 139 - 149
  • [2] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [3] CaMap: Camera-based Map Manipulation on Mobile Devices
    Chen, Liang
    Chen, Dongyi
    [J]. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,
  • [4] Chen LC, 2017, Arxiv, DOI arXiv:1706.05587
  • [5] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation
    Chen, Liang-Chieh
    Zhu, Yukun
    Papandreou, George
    Schroff, Florian
    Adam, Hartwig
    [J]. COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 : 833 - 851
  • [6] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs
    Chen, Liang-Chieh
    Papandreou, George
    Kokkinos, Iasonas
    Murphy, Kevin
    Yuille, Alan L.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) : 834 - 848
  • [7] Dai JF, 2017, Arxiv, DOI arXiv:1703.06211
  • [8] ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data
    Diakogiannis, Foivos, I
    Waldner, Francois
    Caccetta, Peter
    Wu, Chen
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 162 (162) : 94 - 114
  • [9] Semantic Segmentation of Large-Size VHR Remote Sensing Images Using a Two-Stage Multiscale Training Architecture
    Ding, Lei
    Zhang, Jing
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (08): : 5367 - 5376
  • [10] LANet: Local Attention Embedding to Improve the Semantic Segmentation of Remote Sensing Images
    Ding, Lei
    Tang, Hao
    Bruzzone, Lorenzo
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 426 - 435