Toward real-time margin assessment in breast-conserving surgery with hyperspectral imaging

被引:0
作者
Jong, Lynn-Jade S. [1 ,2 ]
Veluponnar, Dinusha [1 ,2 ]
Geldof, Freija [1 ]
Sanders, Joyce [3 ]
Guimaraes, Marcos Da Silva [3 ]
Peeters, Marie-Jeanne T. F. D. Vrancken [1 ]
van Duijnhoven, Frederieke [1 ]
Sterenborg, Henricus J. C. M. [1 ]
Dashtbozorg, Behdad [1 ]
Ruers, Theo J. M. [1 ,2 ]
机构
[1] Netherlands Canc Inst, Dept Surg, Image Guided Surg, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
[2] Univ Twente, Fac Sci & Technol, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[3] Netherlands Canc Inst, Dept Pathol, Plesmanlaan 121, NL-1066 CX Amsterdam, Netherlands
关键词
Breast-conserving surgery; Hyperspectral imaging; Resection margin assessment; Breast tissue; Tissue classification; CARCINOMA IN-SITU; ONCOLOGY CONSENSUS GUIDELINE; INTRAOPERATIVE ASSESSMENT; OXYGEN-SATURATION; AMERICAN SOCIETY; SURGICAL MARGINS; TUMOR-DETECTION; REEXCISION; EXCISION; RATES;
D O I
10.1038/s41598-025-94526-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Margin assessment in breast-conserving surgery (BSC) remains a critical challenge, with 20-25% of cases resulting in inadequate tumor resection, increasing the risk of local recurrence and the need for additional treatment. In this study, we evaluate the diagnostic performance of hyperspectral imaging (HSI) as a non-invasive technique for assessing resection margins in ex vivo lumpectomy specimens. A dataset of over 200 lumpectomy specimens was collected using two hyperspectral cameras, and a classification algorithm was developed to distinguish between healthy and tumor tissue within margins of 0 and 2 mm. The proposed approach achieved its highest diagnostic performance at a 0 mm margin, with a sensitivity of 92%, specificity of 78%, accuracy of 83%, Matthews correlation coefficient of 68%, and an area under the curve of 89%. The entire resection surface could be imaged and evaluated within 10 minutes, providing a rapid and non-invasive alternative to conventional margin assessment techniques. These findings represent a significant advancement toward real-time intraoperative margin assessment, highlighting the potential of HSI to enhance surgical precision and reduce re-excision rates in BCS.
引用
收藏
页数:13
相关论文
共 75 条
[1]   Hyperspectral imaging for diagnosis and detection of ex-vivo breast cancer [J].
Aboughaleb, Ibrahim H. ;
Aref, Mohamed Hisham ;
El-Sharkawy, Yasser H. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2020, 31
[2]   Detection and Analysis of the Intestinal Ischemia Using Visible and Invisible Hyperspectral Imaging [J].
Akbari, Hamed ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (08) :2011-2017
[3]   Blood Vessel Detection and Artery-Vein Differentiation Using Hyperspectral Imaging [J].
Akbari, Hamed ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, :1461-+
[4]   Extent of Margin Involvement, Lymphovascular Invasion, and Extensive Intraductal Component Predict for Residual Disease After Wide Local Excision for Breast Cancer [J].
Alrahbi, Salim ;
Chan, Patrick M. Y. ;
Ho, Bernard C. S. ;
Seah, Melanie D. W. ;
Chen, Juliana J. C. ;
Tan, Ern Yu .
CLINICAL BREAST CANCER, 2015, 15 (03) :219-226
[5]   Low-Cost Commercial Integrated Spectral Sensor for Revealing Breast Cancer Margins [J].
Aref, Mohamed Hisham Fouad ;
Aboughaleb, Ibrahim H. ;
Abbass, Mohamed A. ;
Hussein, Abdallah Abdelkader ;
El-Ghaffar, Sara Abd ;
Sabry, Yasser M. .
2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, :137-141
[6]   The role of reexcision for positive margins in optimizing local disease control after breast-conserving surgery for cancer [J].
Aziz, Dalal ;
Rawlinson, Ellen ;
Narod, Steven A. ;
Sun, Ping ;
Lickley, H. Lavina A. ;
McCready, David R. ;
Holloway, Claire M. B. .
BREAST JOURNAL, 2006, 12 (04) :331-337
[7]   Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery [J].
Baltussen, Elisabeth J. M. ;
Kok, Esther N. D. ;
de Koning, Susan G. Brouwer ;
Sanders, Joyce ;
Aalbers, Arend G. J. ;
Kok, Niels F. M. ;
Beets, Geerard L. ;
Flohil, Claudie C. ;
Bruin, Sjoerd C. ;
Kuhlmann, Koert F. D. ;
Sterenborg, Henricus J. C. M. ;
Ruers, Theo J. M. .
JOURNAL OF BIOMEDICAL OPTICS, 2019, 24 (01)
[8]   The use of confidence or fiducial limits illustrated in the case of the binomial. [J].
Clopper, CJ ;
Pearson, ES .
BIOMETRIKA, 1934, 26 :404-413
[9]   Automatic optical biopsy for colorectal cancer using hyperspectral imaging and artificial neural networks [J].
Collins, Toby ;
Bencteux, Valentin ;
Benedicenti, Sara ;
Moretti, Valentina ;
Mita, Maria Teresa ;
Barbieri, Vittoria ;
Rubichi, Francesco ;
Altamura, Amedeo ;
Giaracuni, Gloria ;
Marescaux, Jacques ;
Hostettler, Alex ;
Diana, Michele ;
Viola, Massimo Giuseppe ;
Barberio, Manuel .
SURGICAL ENDOSCOPY AND OTHER INTERVENTIONAL TECHNIQUES, 2022, 36 (11) :8549-8559
[10]   Automatic Recognition of Colon and Esophagogastric Cancer with Machine Learning and Hyperspectral Imaging [J].
Collins, Toby ;
Maktabi, Marianne ;
Barberio, Manuel ;
Bencteux, Valentin ;
Jansen-Winkeln, Boris ;
Chalopin, Claire ;
Marescaux, Jacques ;
Hostettler, Alexandre ;
Diana, Michele ;
Gockel, Ines .
DIAGNOSTICS, 2021, 11 (10)