Quantum error correction below the surface code threshold

被引:20
作者
Acharya, Rajeev [1 ]
Abanin, Dmitry A. [1 ,2 ]
Aghababaie-Beni, Laleh [1 ]
Aleiner, Igor [1 ]
Andersen, Trond I. [1 ]
Ansmann, Markus [1 ]
Arute, Frank [1 ]
Arya, Kunal [1 ]
Asfaw, Abraham [1 ]
Astrakhantsev, Nikita [1 ]
Atalaya, Juan [1 ]
Babbush, Ryan [1 ]
Bacon, Dave [1 ]
Ballard, Brian [1 ]
Bardin, Joseph C. [1 ,3 ]
Bausch, Johannes [4 ]
Bengtsson, Andreas [1 ]
Bilmes, Alexander [1 ]
Blackwell, Sam [4 ]
Boixo, Sergio [1 ]
Bortoli, Gina [1 ]
Bourassa, Alexandre [1 ]
Bovaird, Jenna [1 ]
Brill, Leon [1 ]
Broughton, Michael [1 ]
Browne, David A. [1 ]
Buchea, Brett [1 ]
Buckley, Bob B. [1 ]
Buell, David A. [1 ]
Burger, Tim [1 ]
Burkett, Brian [1 ]
Bushnell, Nicholas [1 ]
Cabrera, Anthony [1 ]
Campero, Juan [1 ]
Chang, Hung-Shen [1 ]
Chen, Yu [1 ]
Chen, Zijun [1 ]
Chiaro, Ben [1 ]
Chik, Desmond [1 ]
Chou, Charina [1 ]
Claes, Jahan [1 ]
Cleland, Agnetta Y. [1 ]
Cogan, Josh [1 ]
Collins, Roberto [1 ]
Conner, Paul [1 ]
Courtney, William [1 ]
Crook, Alexander L. [1 ]
Curtin, Ben [1 ]
Das, Sayan [1 ]
Davies, Alex [4 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[3] Univ Massachusetts, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[4] Google DeepMind, London, England
[5] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[6] Univ Connecticut, Dept Phys, Storrs, CT USA
[7] Auburn Univ, Dept Elect & Comp Engn, Auburn, AL 36849 USA
[8] Harvard Univ, Dept Chem, 12 Oxford St, Cambridge, MA 02138 USA
[9] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[10] MIT, Elect Res Lab, Cambridge, MA 02139 USA
[11] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[12] MIT, Dept Phys, Cambridge, MA 02139 USA
[13] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
[14] Yale Univ, Yale Quantum Inst, New Haven, CT USA
[15] Yale Univ, Dept Appl Phys, New Haven, CT 06520 USA
[16] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[17] Swiss Fed Inst Technol, Dept Phys, Zurich, Switzerland
关键词
COMPUTATION;
D O I
10.1038/s41586-024-08449-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantum error correction(1-4) provides a path to reach practical quantum computing by combining multiple physical qubits into a logical qubit, in which the logical error rate is suppressed exponentially as more qubits are added. However, this exponential suppression only occurs if the physical error rate is below a critical threshold. Here we present two below-threshold surface code memories on our newest generation of superconducting processors, Willow: a distance-7 code and a distance-5 code integrated with a real-time decoder. The logical error rate of our larger quantum memory is suppressed by a factor of Lambda=2.14 +/- 0.02 when increasing the code distance by 2, culminating in a 101-qubit distance-7 code with 0.143%+/- 0.003 per cent error per cycle of error correction. This logical memory is also beyond breakeven, exceeding the lifetime of its best physical qubit by a factor of 2.4 +/- 0.3. Our system maintains below-threshold performance when decoding in real time, achieving an average decoder latency of 63 microseconds at distance 5 up to a million cycles, with a cycle time of 1.1 microseconds. We also run repetition codes up to distance 29 and find that logical performance is limited by rare correlated error events, occurring approximately once every hour or 3x10(9) cycles. Our results indicate device performance that, if scaled, could realize the operational requirements of large-scale fault-tolerant quantum algorithms.
引用
收藏
页码:920 / 926
页数:8
相关论文
共 60 条
[1]  
Shor P.W., Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, (1995)
[2]  
Gottesman D., Stabilizer Codes and Quantum Error Correction, (1997)
[3]  
Dennis E., Kitaev A.Y., Landahl A., Preskill J., Topological quantum memory, J. Math. Phys, 43, pp. 4452-4505, (2002)
[4]  
Kitaev A.Y., Fault-tolerant quantum computation by anyons, Ann. Phys, 303, pp. 2-30, (2003)
[5]  
Aspuru-Guzik A., Dutoi A.D., Love P.J., Head-Gordon M., Simulated quantum computation of molecular energies, Science, 309, pp. 1704-1707, (2005)
[6]  
Lloyd S., Universal quantum simulators, Science, 273, pp. 1073-1078, (1996)
[7]  
Shor P.W., Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM Rev, 41, pp. 303-332, (1999)
[8]  
Farhi E., Et al., A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem, Science, 292, pp. 472-475, (2001)
[9]  
McKay D.C., Et al., Benchmarking Quantum Processor Performance at Scale, (2023)
[10]  
Decross M., Et al., The Computational Power of Random Quantum Circuits in Arbitrary Geometries, (2024)