Preference learning based deep reinforcement learning for flexible job shop scheduling problem

被引:0
|
作者
Liu, Xinning [1 ]
Han, Li [1 ]
Kang, Ling [2 ]
Liu, Jiannan [1 ]
Miao, Huadong [3 ]
机构
[1] Dalian Neusoft Univ Informat, Sch Comp & Software, Dalian 116023, Liaoning, Peoples R China
[2] Dalian Neusoft Univ Informat, Neusoft Res Inst, Dalian 116023, Liaoning, Peoples R China
[3] SNOW China Beijing Co Ltd, Dalian Branch, Dalian 116023, Liaoning, Peoples R China
关键词
Flexible job shop scheduling problem; Preference learning; Proximal policy optimization; Deep reinforcement learning; BENCHMARKS; ALGORITHM;
D O I
10.1007/s40747-024-01772-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The flexible job shop scheduling problem (FJSP) holds significant importance in both theoretical research and practical applications. Given the complexity and diversity of FJSP, improving the generalization and quality of scheduling methods has become a hot topic of interest in both industry and academia. To address this, this paper proposes a Preference-Based Mask-PPO (PBMP) algorithm, which leverages the strengths of preference learning and invalid action masking to optimize FJSP solutions. First, a reward predictor based on preference learning is designed to model reward prediction by comparing random fragments, eliminating the need for complex reward function design. Second, a novel intelligent switching mechanism is introduced, where proximal policy optimization (PPO) is employed to enhance exploration during sampling, and masked proximal policy optimization (Mask-PPO) refines the action space during training, significantly improving efficiency and solution quality. Furthermore, the Pearson correlation coefficient (PCC) is used to evaluate the performance of the preference model. Finally, comparative experiments on FJSP benchmark instances of varying sizes demonstrate that PBMP outperforms traditional scheduling strategies such as dispatching rules, OR-Tools, and other deep reinforcement learning (DRL) algorithms, achieving superior scheduling policies and faster convergence. Even with increasing instance sizes, preference learning proves to be an effective reward mechanism in reinforcement learning for FJSP. The ablation study further highlights the advantages of each key component in the PBMP algorithm across performance metrics.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Deep reinforcement learning for solving the joint scheduling problem of machines and AGVs in job shop
    Sun A.-H.
    Lei Q.
    Song Y.-C.
    Yang Y.-F.
    Lei, Qi (leiqi@cqu.edu.cn), 1600, Northeast University (39): : 253 - 262
  • [42] Dynamic Job-Shop Scheduling Based on Transformer and Deep Reinforcement Learning
    Song, Liyuan
    Li, Yuanyuan
    Xu, Jiacheng
    PROCESSES, 2023, 11 (12)
  • [43] Deep Reinforcement Learning-Based Job Shop Scheduling of Smart Manufacturing
    Elsayed, Eman K.
    Elsayed, Asmaa K.
    Eldahshan, Kamal A.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 5103 - 5120
  • [44] A self-learning artificial bee colony algorithm based on reinforcement learning for a flexible job-shop scheduling problem
    Long, Xiaojun
    Zhang, Jingtao
    Qi, Xing
    Xu, Wenlong
    Jin, Tianguo
    Zhou, Kai
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (04):
  • [45] A novel method for solving dynamic flexible job-shop scheduling problem via DIFFormer and deep reinforcement learning
    Wan, Lanjun
    Cui, Xueyan
    Zhao, Haoxin
    Fu, Long
    Li, Changyun
    COMPUTERS & INDUSTRIAL ENGINEERING, 2024, 198
  • [46] Flexible Job-Shop Scheduling via Graph Neural Network and Deep Reinforcement Learning
    Song, Wen
    Chen, Xinyang
    Li, Qiqiang
    Cao, Zhiguang
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1600 - 1610
  • [47] Dynamic scheduling for multi-objective flexible job shop via deep reinforcement learning
    Yuan, Erdong
    Wang, Liejun
    Song, Shiji
    Cheng, Shuli
    Fan, Wei
    APPLIED SOFT COMPUTING, 2025, 171
  • [48] DeepMAG: Deep reinforcement learning with multi-agent graphs for flexible job shop scheduling
    Zhang, Jia-Dong
    He, Zhixiang
    Chan, Wing -Ho
    Chow, Chi -Yin
    KNOWLEDGE-BASED SYSTEMS, 2023, 259
  • [49] Distributional reinforcement learning with the independent learners for flexible job shop scheduling problem with high variability
    Oh, Seung Heon
    Cho, Young In
    Woo, Jong Hun
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (04) : 1157 - 1174
  • [50] A Reinforcement Learning Approach for Flexible Job Shop Scheduling Problem With Crane Transportation and Setup Times
    Du, Yu
    Li, Junqing
    Li, Chengdong
    Duan, Peiyong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (04) : 5695 - 5709