Spatiotemporal dynamics in a fractional diffusive SIS epidemic model with mass action infection mechanism

被引:1
作者
Shi, Peng [1 ]
Li, Wan-Tong [1 ]
Yang, Fei-Ying [1 ]
机构
[1] Lanzhou Univ, Sch Math & Stat, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
Epidemic model; Fractional diffusion; Basic reproduction number; Asymptotic profiles; Stability; POSITIVE STEADY-STATE; ASYMPTOTIC PROFILES; EIGENVALUE PROBLEMS; LEVY; EQUATION; STABILITY; PATTERNS; SPREAD; RISK;
D O I
10.1007/s00285-024-02153-1
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper is concerned with spatiotemporal dynamics of a fractional diffusive susceptible-infected-susceptible (SIS) epidemic model with mass action infection mechanism. Concretely, we first focus on the existence and stability of the disease-free and endemic equilibria. Then, we give the asymptotic profiles of the endemic equilibrium on small and large diffusion rates, which can reveal the impact of dispersal rates and fractional powers simultaneously. It is worth noting that we have some counter-intuitive findings: controlling the flow of infected individuals will not eradicate the disease, but restricting the movement of susceptible individuals will make the disease disappear.
引用
收藏
页数:52
相关论文
共 51 条
[21]   Asymptotic profiles of a nonlocal dispersal SIS epidemic model with saturated incidence [J].
Feng, Yan-Xia ;
Li, Wan-Tong ;
Yang, Fei-Ying .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2024,
[22]   Dynamics and asymptotic profiles of a nonlocal dispersal SIS epidemic model with bilinear incidence and Neumann boundary conditions [J].
Feng, Yan-Xia ;
Li, Wan-Tong ;
Ruan, Shigui ;
Yang, Fei-Ying .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 335 :294-346
[23]   A mathematical model of the spread of feline leukemia virus (FeLV) through a highly heterogeneous spatial domain [J].
Fitzgibbon, WE ;
Langlais, M ;
Morgan, JJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2001, 33 (03) :570-588
[24]   Elliptic eigenvalue problems and unbounded continua of positive solutions of a semilinear elliptic equation [J].
Fraile, JM ;
Medina, PK ;
LopezGomez, J ;
Merino, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (01) :295-319
[25]   A diffusive SIS epidemic model with saturated incidence function in a heterogeneous environment [J].
Gao, Daozhou ;
Lei, Chengxia ;
Peng, Rui ;
Zhang, Benben .
NONLINEARITY, 2024, 37 (02)
[26]   A SIS reaction-diffusion-advection model in a low-risk and high-risk domain [J].
Ge, Jing ;
Kim, Kwang Ik ;
Lin, Zhigui ;
Zhu, Huaiping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (10) :5486-5509
[27]   Asymptotic profiles of a diffusive SIS epidemic model with vector-mediated infection and logistic source [J].
Guo, Yutong ;
Wang, Jinliang ;
Ji, Desheng .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (06)
[28]   Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells [J].
Harris, Tajie H. ;
Banigan, Edward J. ;
Christian, David A. ;
Konradt, Christoph ;
Wojno, Elia D. Tait ;
Norose, Kazumi ;
Wilson, Emma H. ;
John, Beena ;
Weninger, Wolfgang ;
Luster, Andrew D. ;
Liu, Andrea J. ;
Hunter, Christopher A. .
NATURE, 2012, 486 (7404) :545-U145
[29]   Boundedness vs. blow-up in a chemotaxis system [J].
Horstmann, D ;
Winkler, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 215 (01) :52-107
[30]   Environmental context explains Levy and Brownian movement patterns of marine predators [J].
Humphries, Nicolas E. ;
Queiroz, Nuno ;
Dyer, Jennifer R. M. ;
Pade, Nicolas G. ;
Musyl, Michael K. ;
Schaefer, Kurt M. ;
Fuller, Daniel W. ;
Brunnschweiler, Juerg M. ;
Doyle, Thomas K. ;
Houghton, Jonathan D. R. ;
Hays, Graeme C. ;
Jones, Catherine S. ;
Noble, Leslie R. ;
Wearmouth, Victoria J. ;
Southall, Emily J. ;
Sims, David W. .
NATURE, 2010, 465 (7301) :1066-1069