Stability Results for Evolution Equations Involving Superposition Operators of Mixed Fractional Orders

被引:0
作者
Khieu, Tran Thi [1 ,2 ]
Khanh, Tra Quoc [3 ,4 ]
机构
[1] Univ Sci Ho Chi Minh City, Fac Math & Comp Sci, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Ho Chi Minh City, Vietnam
[3] Van Lang Univ, Inst Computat Sci & Artificial Intelligence, Lab Appl & Ind Math, Ho Chi Minh City, Vietnam
[4] Van Lang Univ, Fac Fundamental Sci, Ho Chi Minh City, Vietnam
关键词
Fractional diffusion equation; time-dependent coefficients; poly-fractional operator; filter regularization; DEPENDENT DIFFUSION-COEFFICIENT; BACKWARD PROBLEM; SIMULATION;
D O I
10.1007/s00009-024-02774-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present investigation examines some forward and backward problems for the evolution equations involving superposition operators of mixed fractional orders which was introduced recently by Dipierro et al. in a series of works. This potentially marks the first instance of such an investigation. We present a result concerning the existence, uniqueness, and decay estimate of the solution for the forward problem. For the backward problem, we provide some stability estimates within the Sobolev space HpRd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H<^>p}\left( {{\mathbb {R}<^>d}} \right) $$\end{document} and prove that the problem is ill-posed at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A general regularization procedure is further formulated to conquer this ill-posedness. These works have been done by examining certain essential characteristics of the Kilbas-Saigo function together with using appropriate estimates
引用
收藏
页数:20
相关论文
共 43 条
[1]   Simulation of the continuous time random walk of the space-fractional diffusion equations [J].
Abdel-Rehim, E. A. ;
Gorenflo, R. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :274-283
[2]   Semilinear elliptic equations involving mixed local and nonlocal operators [J].
Biagi, Stefano ;
Vecchi, Eugenio ;
Dipierro, Serena ;
Valdinoci, Enrico .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2021, 151 (05) :1611-1641
[3]   Local and nonlocal anisotropic transport in reversed shear magnetic fields: Shearless Cantori and nondiffusive transport [J].
Blazevski, Daniel ;
del-Castillo-Negrete, Diego .
PHYSICAL REVIEW E, 2013, 87 (06)
[4]   Diffusion in heterogeneous media: An iterative scheme for finding approximate solutions to fractional differential equations with time-dependent coefficients [J].
Bologna, Mauro ;
Svenkeson, Adam ;
West, Bruce J. ;
Grigolini, Paolo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :297-311
[5]   Some Properties of the Kilbas-Saigo Function [J].
Boudabsa, Lotfi ;
Simon, Thomas .
MATHEMATICS, 2021, 9 (03) :1-24
[6]  
Bucur C., 2016, Nonlocal Diffusion and Applications, P20
[7]   Backward problem for time-space fractional diffusion equations in Hilbert scales [J].
Dang Duc Trong ;
Dinh Nguyen Duy Hai .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 93 :253-264
[8]  
Dipierro S., 2024, Commun. Contemp. Math.
[9]  
Dipierro S, 2024, Arxiv, DOI arXiv:2404.11091
[10]   An existence theory for superposition operators of mixed order subject to jumping nonlinearities [J].
Dipierro, Serena ;
Perera, Kanishka ;
Sportelli, Caterina ;
Valdinoci, Enrico .
NONLINEARITY, 2024, 37 (05)