Ramsey numbers of large books versus multipartite graphs

被引:0
作者
Fan, Chunchao [1 ]
Huang, Junqiang [1 ]
Lin, Qizhong [1 ]
机构
[1] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350108, Peoples R China
基金
国家重点研发计划;
关键词
Ramsey number; Book; Complete multipartite graph; GOODNESS;
D O I
10.1007/s00373-024-02859-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For graphs H (1) and H (2) , the Ramsey number r(H-1, H (2) ) is the smallest positive integer N such that any graph G on N vertices contains H (1) as a subgraph, or its complement contains H (2) as a subgraph. Let B ((k)) (n) denote the book graph on n + k vertices which consists of n copies of K (k +1) all sharing a common K (k) , and let H := K-p(a(1), ..., a(p)) be the complete p-partite graph with parts of sizes a 1 ,... , a p . Recently, strengthening a result of Fox, He and Wigderson ( Adv. Combin. 4 (2023), 21pp), Fan and Lin (J. Combin. Theory Ser. A 199(2023), 19pp) showed that for every k, p, t >= 2, there exists delta > 0 such that the following holds for all large n . Let 1 <= a (1) <= center dot center dot center dot <= a (p -1) <= t and a(p) <= delta n be positive integers. If a (1) = 1, then r(H, B ((k)) (n) ) <= (p - 1 )( n + ka (2) - 1 ) + 1. The inequality is tight if n equivalent to 1 ( mod a 2 ) . In this paper, we improve the above upper bounds for the cases when n equivalent to 2 ( mod a 2 ) and n equivalent to 3 ( mod a (2) ) . Combining the new upper bounds and constructions of the lower bounds for these cases, we are able to determine the exact values of r ( K (p) ( a (1) ,... ,a(p)), B (n) ((k)) ) when p = 3. The bound on 1/delta we obtain is not of tower-type since our proof does not rely on the regularity lemma.
引用
收藏
页数:14
相关论文
共 24 条
[1]   Ramsey-goodness-and otherwise [J].
Allen, Peter ;
Brightwell, Graham ;
Skokan, Jozef .
COMBINATORICA, 2013, 33 (02) :125-160
[2]   Ramsey Goodness of Bounded Degree Trees [J].
Balla, Igor ;
Pokrovskiy, Alexey ;
Sudakov, Benny .
COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (03) :289-309
[3]  
Bondy J.A., 2008, GRADUATE TEXTS MATH, V244, DOI DOI 10.1007/978-1-84628-970-5
[4]   GENERALIZATIONS OF A RAMSEY-THEORETIC RESULT OF CHVATAL [J].
BURR, SA ;
ERDOS, P .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :39-51
[5]  
BURR SA, 1981, J LOND MATH SOC, V24, P405
[6]   A theorem on cycle-wheel Ramsey number [J].
Chen, Yaojun ;
Cheng, T. C. Edwin ;
Ng, C. T. ;
Zhang, Yunqing .
DISCRETE MATHEMATICS, 2012, 312 (05) :1059-1061
[7]  
Chung F, 2025, Arxiv, DOI arXiv:2208.05829
[8]  
Chvatal V., 1977, J GRAPH THEOR, V1, P93, DOI DOI 10.1002/JGT.3190010118
[9]  
Conlon D., 2015, Surveys in, V424 of, P49
[10]   Ramsey non-goodness involving books [J].
Fan, Chunchao ;
Lin, Qizhong .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 199