3D convolutional deep learning for nonlinear estimation of body composition from whole body morphology

被引:0
|
作者
Tian, Isaac Y. [1 ]
Liu, Jason [1 ]
Wong, Michael C. [2 ]
Kelly, Nisa N. [2 ]
Liu, Yong E. [2 ]
Garber, Andrea K. [3 ]
Heymsfield, Steven B. [4 ]
Curless, Brian [1 ]
Shepherd, John A. [2 ]
机构
[1] Univ Washington, Paul G Allen Sch Comp Sci Engn, Seattle, WA 98195 USA
[2] Univ Hawaii Manoa, Univ Hawaii, Ctr Canc, Honolulu, HI 96822 USA
[3] Univ Calif San Francisco, UCSF Sch Med, San Francisco, CA USA
[4] Louisiana State Univ, Pennington Biomed Res Ctr, Baton Rouge, LA USA
来源
NPJ DIGITAL MEDICINE | 2025年 / 8卷 / 01期
基金
美国国家卫生研究院;
关键词
METABOLIC SYNDROME; ALL-CAUSE; MORTALITY; OBESITY; MALNUTRITION; CANCER; RISK;
D O I
10.1038/s41746-025-01469-6
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Body composition prediction from 3D optical imagery has previously been studied with linear algorithms. In this study, we present a novel application of deep 3D convolutional graph networks and nonlinear Gaussian process regression for human body shape parameterization and body composition estimation. We trained and tested linear and nonlinear models with ablation studies on a novel ensemble body shape dataset containing 4286 scans. Nonlinear GPR produced up to a 20% reduction in prediction error and up to a 30% increase in precision over linear regression for both sexes in 10 tested body composition variables. Deep shape features produced 6-8% reduction in prediction error over linear PCA features for males only, and a 4-14% reduction in precision error for both sexes. All coefficients of determination (R2) for all predicted variables were above 0.86 and achieved lower estimation RMSEs than all previous work on 10 metrics of body composition.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] 3D head tracking and body lean estimation
    Nanda, H
    Fujimura, K
    2003 IEEE INTELLIGENT TRANSPORTATION SYSTEMS PROCEEDINGS, VOLS. 1 & 2, 2003, : 305 - 310
  • [32] Automated body composition estimation from device-agnostic 3D optical scans in pediatric populations
    Tian, Isaac Y.
    Wong, Michael C.
    Nguyen, William M.
    Kennedy, Samantha
    McCarthy, Cassidy
    Kelly, Nisa N.
    Liu, Yong E.
    Garber, Andrea K.
    Heymsfield, Steven B.
    Curless, Brian
    Shepherd, John A.
    CLINICAL NUTRITION, 2023, 42 (09) : 1619 - 1630
  • [33] 3D human whole body construction by contour triangulation
    Koo, BK
    Choi, YK
    Chien, SI
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (01): : 233 - 243
  • [34] 3D (c)GAN for Whole Body MR Synthesis
    Mensing, Daniel
    Hirsch, Jochen
    Wenzel, Markus
    Guenther, Matthias
    DEEP GENERATIVE MODELS, DGM4MICCAI 2022, 2022, 13609 : 97 - 105
  • [35] 3D Whole-Body MRI of the Musculoskeletal System
    Pasoglou, Vassiliki
    Van Nieuwenhove, Sandy
    Peeters, Frank
    Duchene, Gaetan
    Kirchgesner, Thomas
    Lecouvet, Frederic E.
    SEMINARS IN MUSCULOSKELETAL RADIOLOGY, 2021, 25 (03) : 441 - 454
  • [36] Expressive Whole-Body 3D Gaussian Avatar
    Moon, Gyeongsik
    Shiratori, Takaaki
    Saito, Shunsuke
    COMPUTER VISION - ECCV 2024, PT XLI, 2025, 15099 : 19 - 35
  • [37] Deep Learning Segmentation, Visualization, and Automated 3D Assessment of Ciliary Body in 3D Ultrasound Biomicroscopy Images
    Minhaz, Ahmed Tahseen
    Sevgi, Duriye Damla
    Kwak, Sunwoo
    Kim, Alvin
    Wu, Hao
    Helms, Richard W.
    Bayat, Mahdi
    Wilson, David L.
    Orge, Faruk H.
    TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2022, 11 (10):
  • [38] 3D Shape Estimation of Multiview RGB Images from Deep Convolutional Network
    Han B.-K.
    Park J.
    Seo H.
    Song S.-H.
    Journal of Institute of Control, Robotics and Systems, 2022, 28 (07): : 671 - 677
  • [39] Learning Pose Grammar to Encode Human Body Configuration for 3D Pose Estimation
    Fang, Hao-Shu
    Xu, Yuanlu
    Wang, Wenguan
    Liu, Xiaobai
    Zhu, Song-Chun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6821 - 6828
  • [40] Learning camera viewpoint using CNN to improve 3D body pose estimation
    Ghezelghieh, Mona Fathollahi
    Kasturi, Rangachar
    Sarkar, Sudeep
    PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 685 - 693