New limits of the Lie product formula type in Banach algebras

被引:0
作者
Popa, Dumitru [1 ]
机构
[1] Ovidius Univ Constanta, Dept Math, Bd Mamaia 124, Constanta 900527, Romania
关键词
Banach algebra; Lie product type formulas; Limit of sequences in Banach algebras; Exponential and cosine functions in Banach algebras; CONVERGENCE; INEQUALITIES;
D O I
10.1007/s13324-024-01002-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We find new limits of the Lie product formula type in Banach algebras with unit. Some sample results: Let X, Y, Z be Banach algebras with unit, xn,ynn is an element of N subset of XxY\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left( x_{n},y_{n}\right) _{n\in \mathbb {N}}\subset X\times Y$$\end{document} convergent sequences with limn ->infinity xn=x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \nolimits _{n\rightarrow \infty }x_{n}=x$$\end{document}, limn ->infinity yn=y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \lim \nolimits _{n\rightarrow \infty }y_{n}=y$$\end{document} and T:XxY -> Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T:X\times Y\rightarrow Z$$\end{document} a continuous bilinear operator with T1,1=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T\left( \textbf{1},\textbf{1}\right) = \textbf{1}$$\end{document}. Then for all sequences of natural numbers ann is an element of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( a_{n}\right) _{n\in \mathbb {N}}$$\end{document} with limn ->infinity an=infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lim \nolimits _{n\rightarrow \infty }a_{n}=\infty $$\end{document} we have limn ->infinity T & prod;k=1nexkank+nk+2n,& prod;k=1neykank+2nk+3nan=eln43Tx,1+ln2T1,y;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left[ T\left( \prod \limits _{k=1}<^>{n}e<^>{ \frac{x_{k}}{a_{n}\left( k+n\right) \left( k+2n\right) }},\prod \limits _{k=1}<^>{n}e<^>{\frac{y_{k}}{a_{n}\left( k+2n\right) \left( k+3n\right) } }\right) \right] <^>{a_{n}}=e<^>{\left( \ln \frac{4}{3}\right) T\left( x,\textbf{ 1}\right) +\left( \ln 2\right) T\left( \textbf{1},y\right) }; \end{aligned}$$\end{document}limn ->infinity T & prod;k=1ncosxkannn+k,& prod;k=1ncoskyknann2+k2nan2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \lim \limits _{n\rightarrow \infty }\left[ T\left( \prod \limits _{k=1}<^>{n}\cos \frac{x_{k}}{a_{n}\sqrt{n\left( n+k\right) }},\prod \limits _{k=1}<^>{n}\cos \frac{ky_{k}}{na_{n}\sqrt{n<^>{2}+k<^>{2}}}\right) \right] <^>{na_{n}<^>{2}} \end{aligned}$$\end{document}=e-ln2Tx2,1+1-pi 4T1,y22.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} =e<^>{-\frac{\left( \ln 2\right) T\left( x<^>{2},\textbf{1}\right) +\left( 1- \frac{\pi }{4}\right) T\left( \textbf{1},y<^>{2}\right) }{2}}. \end{aligned}$$\end{document}
引用
收藏
页数:19
相关论文
共 21 条
[1]   An extended Lie-Trotter formula and its applications [J].
Ahn, Eunkyung ;
Kim, Sejung ;
Lim, Yongdo .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 427 (2-3) :190-196
[2]  
[Anonymous], 1984, Lie Groups, Lie Alegeba and Their Representations
[3]  
[Anonymous], 1996, Graduate Texts in Mathematics
[4]  
Bonsall FF., 1973, Complete Normed Algebras, DOI DOI 10.1007/978-3-642-65669-9
[5]   Suzuki type estimates for exponentiated sums and generalized Lie-Trotter formulas in JB-algebras [J].
Chehade, Sarah ;
Wang, Shuzhou ;
Wang, Zhenhua .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 680 :156-169
[6]   EIGENVALUE INEQUALITIES FOR PRODUCTS OF MATRIX EXPONENTIALS [J].
COHEN, JE ;
FRIEDLAND, S ;
KATO, T ;
KELLY, FP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1982, 45 (JUN) :55-95
[7]  
Engel K.-J., 2000, GRAD TEXT M, V194
[8]   Lie-Trotter Formulae in Jordan-Banach Algebras with Applications to the Study of Spectral-Valued Multiplicative Functionals [J].
Escolano, Gerardo M. ;
Peralta, Antonio M. ;
Villena, Armando R. .
RESULTS IN MATHEMATICS, 2024, 79 (01)
[9]   Convergence of logarithmic trace inequalities via generalized Lie-Trotter formulae [J].
Furuta, T .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 396 :353-372
[10]  
Godement R, 2017, UNIVERSITEXT, P229, DOI 10.1007/978-3-319-54375-8_6