Optimizing adult-oriented artificial intelligence for pediatric chest radiographs by adjusting operating points

被引:0
作者
Shin, Hyun Joo [1 ,2 ]
Han, Kyunghwa [3 ]
Son, Nak-Hoon [4 ]
Kim, Eun-Kyung [1 ,2 ]
Kim, Min Jung [5 ]
Gatidis, Sergios [6 ]
Vasanawala, Shreyas [6 ]
机构
[1] Yonsei Univ, Yongin Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[2] Yonsei Univ, Coll Med, Ctr Clin Imaging Data Sci, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[3] Yonsei Univ, Severance Hosp, Res Inst Radiol Sci, Dept Radiol,Coll Med, 50-1 Yonsei Ro, Seoul 03722, South Korea
[4] Keimyung Univ, Dept Stat, 1095 Dalgubeol Daero, Daegu 42601, South Korea
[5] Yonsei Univ, Yongin Severance Hosp, Coll Med, Dept Pediat, 363 Dongbaekjukjeon Daero, Yongin 16995, Gyeonggi Do, South Korea
[6] Stanford Univ, Lucile Packard Childrens Hosp, Dept Radiol, 725 Welch Rd, Palo Alto, CA 94304 USA
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Child; Artificial intelligence; ROC curve; Radiologists; Pneumothorax; RADIOLOGY; PAPER;
D O I
10.1038/s41598-024-82775-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The purpose of this study was to evaluate whether the optimal operating points of adult-oriented artificial intelligence (AI) software differ for pediatric chest radiographs and to assess its diagnostic performance. Chest radiographs from patients under 19 years old, collected between March and November 2021, were divided into test and exploring sets. A commercial adult-oriented AI software was utilized to detect lung lesions, including pneumothorax, consolidation, nodule, and pleural effusion, using a standard operating point of 15%. A pediatric radiologist reviewed the radiographs to establish ground truth for lesion presence. To determine the optimal operating points, receiver operating characteristic (ROC) curve analysis was conducted, varying thresholds to balance sensitivity and specificity by lesion type, age group, and imaging method. The test set (4,727 chest radiographs, mean 7.2 +/- 6.1 years) and exploring set (2,630 radiographs, mean 5.9 +/- 6.0 years) yielded optimal operating points of 11% for pneumothorax, 14% for consolidation, 15% for nodules, and 6% for pleural effusion. Using a 3% operating point improved pneumothorax sensitivity for children under 2 years, portable radiographs, and anteroposterior projections. Therefore, optimizing operating points of AI based on lesion type, age, and imaging method could improve diagnostic performance for pediatric chest radiographs, building on adult-oriented AI as a foundation.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Artificial Intelligence in Adult and Pediatric Dentistry: A Narrative Review
    Naeimi, Seyed Mohammadrasoul
    Darvish, Shayan
    Salman, Bahareh Nazemi
    Luchian, Ionut
    BIOENGINEERING-BASEL, 2024, 11 (05):
  • [22] Management-oriented modeling: optimizing nitrogen management with artificial intelligence
    Li, MB
    Yost, RS
    AGRICULTURAL SYSTEMS, 2000, 65 (01) : 1 - 27
  • [23] Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective
    Schalekamp, Steven
    Klein, Willemijn M.
    van Leeuwen, Kicky G.
    PEDIATRIC RADIOLOGY, 2022, 52 (11) : 2120 - 2130
  • [24] Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective
    Steven Schalekamp
    Willemijn M. Klein
    Kicky G. van Leeuwen
    Pediatric Radiology, 2022, 52 : 2120 - 2130
  • [25] Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in symptomatic patients
    Michael D. Kuo
    Keith W. H. Chiu
    David S. Wang
    Anna Rita Larici
    Dmytro Poplavskiy
    Adele Valentini
    Alessandro Napoli
    Andrea Borghesi
    Guido Ligabue
    Xin Hao B. Fang
    Hing Ki C. Wong
    Sailong Zhang
    John R. Hunter
    Abeer Mousa
    Amato Infante
    Lorenzo Elia
    Salvatore Golemi
    Leung Ho P. Yu
    Christopher K. M. Hui
    Bradley J. Erickson
    European Radiology, 2023, 33 : 23 - 33
  • [26] Utility of artificial intelligence for pneumothorax detection on chest radiographs performed after computed tomography guided percutaneous transthoracic biopsy
    Ferrando Blanco, D.
    Persiva Morenza, O.
    Cabanzo Campos, L. B.
    Sanchez Martinez, A. L.
    Varona Porres, D.
    Bellido Vargas, L. A. Del Carpio
    Andreu Soriano, J.
    RADIOLOGIA, 2024, 66 : S40 - S46
  • [27] Multi-center validation of an artificial intelligence system for detection of COVID-19 on chest radiographs in symptomatic patients
    Kuo, Michael D.
    Chiu, Keith W. H.
    Wang, David S.
    Larici, Anna Rita
    Poplavskiy, Dmytro
    Valentini, Adele
    Napoli, Alessandro
    Borghesi, Andrea
    Ligabue, Guido
    Fang, Xin Hao B.
    Wong, Hing Ki C.
    Zhang, Sailong
    Hunter, John R.
    Mousa, Abeer
    Infante, Amato
    Elia, Lorenzo
    Golemi, Salvatore
    Yu, Leung Ho P.
    Hui, Christopher K. M.
    Erickson, Bradley J.
    EUROPEAN RADIOLOGY, 2023, 33 (01) : 23 - 33
  • [28] Hospital-wide survey of clinical experience with artificial intelligence applied to daily chest radiographs
    Shin, Hyun Joo
    Lee, Seungsoo
    Kim, Sungwon
    Son, Nak-Hoon
    Kim, Eun-Kyung
    PLOS ONE, 2023, 18 (03):
  • [29] Phantom evaluation of feasibility and applicability of artificial intelligence based pulmonary nodule detection in chest radiographs
    El-Gedaily, Mona
    Euler, Andre
    Guldimann, Mike
    Schulz, Bastian
    Zangeneh, Foroud Aghapour
    Prause, Andreas
    Kubik-Huch, Rahel A.
    Niemann, Tilo
    MEDICINE, 2024, 103 (47) : e40485
  • [30] The Potential Clinical Utility of an Artificial Intelligence Model for Identification of Vertebral Compression Fractures in Chest Radiographs
    Ghatak, Ankita
    Hillis, James M.
    Mercaldo, Sarah F.
    Newbury-Chaet, Isabella
    Chin, John K.
    Digumarthy, Subba R.
    Rodriguez, Karen
    Muse, Victorine V.
    Andriole, Katherine P.
    Dreyer, Keith J.
    Kalra, Mannudeep K.
    Bizzo, Bernardo C.
    JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2025, 22 (02) : 220 - 229