Vacuum polarization effects of pointlike impurity

被引:0
|
作者
Grats, Yuri, V [1 ]
Spirin, Pavel [1 ]
机构
[1] MV Lomonosov Moscow State Univ, Dept Theoret Phys, Moscow 119991, Russia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2025年 / 140卷 / 02期
关键词
ZERO-RANGE POTENTIALS; QUANTUM-FIELD THEORY; SCALAR FIELD; ENERGY; MECHANICS;
D O I
10.1140/epjp/s13360-025-06096-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop precise formulation for the effects of vacuum polarization near a pointlike source with a zero-range (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-like) potential in three spatial dimensions. There are different ways of introducing delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-interaction in the framework of quantum theory. We discuss the approach based on the concept of self-adjoint extensions of densely defined symmetric operators. Within this approach, we consider the real massive scalar field in three-dimensional Euclidean space with a single extracted point. Appropriate boundary conditions, imposed at this point, enable one to consider all self-adjoint extensions of -Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \Delta$$\end{document} as operators which can describe a pointlike source with a zero-range potential. In this framework, we compute the renormalized vacuum expectation value of the field square <phi 2(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \phi <^>{{\hspace{1.0pt}}2}(x)\rangle _{\textrm{ren}}$$\end{document} and the renormalized vacuum average of the scalar-field's energy-momentum tensor < T mu nu(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle T_{\mu \nu }(x)\rangle _{\textrm{ren}}$$\end{document}. Asymptotic cases are discussed in detail.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Vacuum Polarization of a Quantized Scalar Field in the Thermal State on the Short Throat Wormhole Background
    Lisenkov, Dmitriy
    Popov, Arkady
    SYMMETRY-BASEL, 2023, 15 (02):
  • [32] Polarization of light: Fourth-order effects and polarization-squeezed states
    D. M. Klyshko
    Journal of Experimental and Theoretical Physics, 1997, 84 : 1065 - 1079
  • [33] Vacuum-polarization Wichmann-Kroll correction in the finite-basis-set approach
    Ivanov, V. K.
    Baturin, S. S.
    Glazov, D. A.
    Volotka, A. V.
    PHYSICAL REVIEW A, 2024, 110 (03)
  • [34] Polarization of vacuum of quantum fields in the external Aharonov-Bohm field. Part I
    Kurnyavko O.L.
    Shirokov I.V.
    Yurevich Yu.A.
    Russian Physics Journal, 2006, 49 (2) : 147 - 156
  • [35] One-loop vacuum polarization at mα7 order for the two-center problem
    Karr, J. -Ph.
    Hilico, L.
    Korobov, Vladimir I.
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [36] Homogenization and Electronic Polarization Effects in Dielectric Materials
    Jiang, Jiann-Sheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (02): : 319 - 339
  • [37] Effects of pressure and strain on spin polarization of IrMnSb
    Tutic, Ibrica
    Herran, Juliana
    Staten, Bradley
    Gray, Paul
    Paudel, Tula R.
    Sokolov, Andrei
    Tsymbal, Evgeny Y.
    Lukashev, Pavel V.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2017, 29 (07)
  • [38] Impurity effects on phase change in Lennard-Jones atomic clusters
    Ghorai, Sankar
    Nandi, Mintu
    Chaudhury, Pinaki
    JOURNAL OF CHEMICAL SCIENCES, 2023, 135 (02)
  • [39] Effects of impurity and cross-sectional shape on entropy of quantum wires
    Khordad, R.
    Sedehi, H. R. Rastegar
    Bahramiyan, H.
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2018, 17 (02) : 551 - 561
  • [40] Effects of vacuum fluctuation suppression on atomic decay rates
    Ford, L. H.
    Roman, Thomas A.
    ANNALS OF PHYSICS, 2011, 326 (08) : 2294 - 2306