Vacuum polarization effects of pointlike impurity

被引:0
|
作者
Grats, Yuri, V [1 ]
Spirin, Pavel [1 ]
机构
[1] MV Lomonosov Moscow State Univ, Dept Theoret Phys, Moscow 119991, Russia
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2025年 / 140卷 / 02期
关键词
ZERO-RANGE POTENTIALS; QUANTUM-FIELD THEORY; SCALAR FIELD; ENERGY; MECHANICS;
D O I
10.1140/epjp/s13360-025-06096-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop precise formulation for the effects of vacuum polarization near a pointlike source with a zero-range (delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-like) potential in three spatial dimensions. There are different ways of introducing delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta$$\end{document}-interaction in the framework of quantum theory. We discuss the approach based on the concept of self-adjoint extensions of densely defined symmetric operators. Within this approach, we consider the real massive scalar field in three-dimensional Euclidean space with a single extracted point. Appropriate boundary conditions, imposed at this point, enable one to consider all self-adjoint extensions of -Delta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$- \Delta$$\end{document} as operators which can describe a pointlike source with a zero-range potential. In this framework, we compute the renormalized vacuum expectation value of the field square <phi 2(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle \phi <^>{{\hspace{1.0pt}}2}(x)\rangle _{\textrm{ren}}$$\end{document} and the renormalized vacuum average of the scalar-field's energy-momentum tensor < T mu nu(x)> ren\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle T_{\mu \nu }(x)\rangle _{\textrm{ren}}$$\end{document}. Asymptotic cases are discussed in detail.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Vacuum polarization of the quantized massive fields in Friedman-Robertson-Walker spacetime
    Matyjasek, Jerzy
    Sadurski, Pawel
    Telecka, Malgorzata
    PHYSICAL REVIEW D, 2014, 89 (08):
  • [22] Graviton loop corrections to vacuum polarization in de Sitter in a general covariant gauge
    Glavan, D.
    Miao, S. P.
    Prokopec, Tomislav
    Woodard, R. P.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (19)
  • [23] Effects of impurity on negatively charged exciton on quantum ring
    Wu Hong
    ACTA PHYSICA SINICA, 2010, 59 (12) : 8843 - 8849
  • [24] Fermionic vacuum polarization by a cosmic string in anti-de Sitter spacetime
    Bezerra de Mello, E. R.
    Figueiredo Medeiros, E. R.
    Saharian, A. A.
    CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (17)
  • [25] e--e+ pair creation by vacuum polarization around electromagnetic black holes
    Cherubini, C.
    Geralico, A.
    Rueda H, J. A.
    Ruffini, R.
    PHYSICAL REVIEW D, 2009, 79 (12)
  • [26] Vacuum polarization in a hydrogen-like relativistic atom: g factor of a bound electron
    S. G. Karshenboim
    V. G. Ivanov
    V. M. Shabaev
    Journal of Experimental and Theoretical Physics, 2001, 93 : 477 - 484
  • [27] The effect of the polarization charges on the optical properties of a spherical quantum dot with an off-central hydrogenic impurity
    Boichuk, V. I.
    Bilynskyi, I. V.
    Leshko, R. Ya.
    Turyanska, L. M.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 44 (02) : 476 - 482
  • [28] Irreducible three-loop vacuum-polarization correction in muonic bound systems
    Adkins, Gregory S.
    Jentschura, Ulrich D.
    PHYSICAL REVIEW D, 2025, 111 (05)
  • [29] Quantum Vacuum Effects in Braneworlds on AdS Bulk
    Saharian, Aram A.
    UNIVERSE, 2020, 6 (10)
  • [30] Effects of impurity elements on SiC grain boundary stability and corrosion
    Hui, Jun
    Zhang, Bao-Liang
    Liu, Tao
    Liu, Min
    Liu, Wen-Guan
    NUCLEAR SCIENCE AND TECHNIQUES, 2021, 32 (11)