Boundedness of sublinear operators on two-weighted grand Herz spaces with variable exponent

被引:0
作者
Nafis, Hammad [1 ]
机构
[1] Riphah Int Univ, Dept Math & Stat, Islamabad, Pakistan
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2025年 / 2025卷 / 01期
关键词
Herz spaces; Grand spaces; Variable exponent spaces; Sublinear operators; WEIGHTED NORM INEQUALITIES; LEBESGUE SPACES; FRACTIONAL INTEGRALS; WAVELET CHARACTERIZATION; MAXIMAL OPERATOR; HARDY-SPACES; COMMUTATORS;
D O I
10.1186/s13660-025-03273-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we introduce the concept of two-weighted grand variable Herz spaces as a natural generalization of variable Herz spaces. We establish the boundedness of sublinear operators within this framework, offering significant insights into their functional behavior. Our findings, incorporating additional weight factors, broaden the scope and applicability of our results.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Maximal and singular integral operators in weighted grand variable exponent Lebesgue spaces
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (03)
  • [42] Maximal and singular integral operators in weighted grand variable exponent Lebesgue spaces
    Vakhtang Kokilashvili
    Alexander Meskhi
    [J]. Annals of Functional Analysis, 2021, 12
  • [43] The Two-Weighted Inequalities for Sublinear Operators Generated by B Singular Integrals in Weighted Lebesgue Spaces
    Vagif S. Guliyev
    Fatai A. Isayev
    [J]. Acta Applicandae Mathematicae, 2013, 127 : 1 - 16
  • [44] COMMUTATORS OF SUBLINEAR OPERATORS IN GRAND MORREY SPACES
    Kokilashvili, Vakhtang
    Meskhi, Alexander
    Rafeiro, Humberto
    [J]. STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (02) : 211 - 232
  • [45] Grand Herz-Morrey Spaces with Variable Exponent
    Sultan, M.
    Sultan, B.
    Hussain, A.
    [J]. MATHEMATICAL NOTES, 2023, 114 (5-6) : 957 - 977
  • [46] Boundedness of multilinear Calderon-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents
    Zhu, Yueping
    Tang, Yan
    Jiang, Lixin
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 11246 - 11262
  • [47] MAXIMAL AND CALDERON-ZYGMUND OPERATORS IN WEIGHTED GRAND VARIABLE EXPONENT LEBESGUE SPACES
    Kokilashvili, V
    Meskhi, A.
    [J]. TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2019, 173 (02) : 127 - 131
  • [48] AN INTRINSIC SQUARE FUNCTION ON WEIGHTED HERZ SPACES WITH VARIABLE EXPONENT
    Izuki, Mitsuo
    Noi, Takahiro
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03): : 799 - 816
  • [49] Boundedness of Rough Singular Integral Operators on Homogeneous Herz Spaces with Variable Exponents
    Cai, Jinling
    Dong, Baohua
    Tang, Canqin
    [J]. JOURNAL OF MATHEMATICAL STUDY, 2020, 53 (03): : 297 - 315
  • [50] ON THE BOUNDEDNESS OF MAXIMAL AND POTENTIAL OPERATORS IN VARIABLE EXPONENT AMALGAM SPACES
    Meskhi, Alexander
    Zaighum, Muhammad Asad
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01): : 123 - 152