Generalized positive scalar curvature on spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^c$$\end{document} manifolds

被引:0
作者
Boris Botvinnik [1 ]
Jonathan Rosenberg [2 ]
机构
[1] University of Oregon,Department of Mathematics
[2] University of Maryland,Department of Mathematics
关键词
Positive scalar curvature; Spin; manifold; Bordism; -theory; Index; Index difference; Primary 53C21; Secondary 53C27; 58J22; 55N22; 19L41;
D O I
10.1007/s10455-024-09977-6
中图分类号
学科分类号
摘要
Let (M, L) be a (compact) non-spin spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^c$$\end{document} manifold. Fix a Riemannian metric g on M and a connection A on L, and let DL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_L$$\end{document} be the associated spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^c$$\end{document} Dirac operator. Let R(g,A)tw:=Rg+2ic(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {tw }}_{(g,A)}:=R_g + 2ic(\Omega )$$\end{document} be the twisted scalar curvature (which takes values in the endomorphisms of the spinor bundle), where Rg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_g$$\end{document} is the scalar curvature of g and 2ic(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2ic(\Omega )$$\end{document} comes from the curvature 2-form Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} of the connection A. Then the Lichnerowicz-Schrödinger formula for the square of the Dirac operator takes the form DL2=∇∗∇+14R(g,A)tw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_L^2 =\nabla ^*\nabla + \frac{1}{4}R^{\text {tw }}_{(g,A)}$$\end{document}. In a previous work we proved that a closed non-spin simply-connected spinc\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^c$$\end{document}-manifold (M, L) of dimension n≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\ge 5$$\end{document} admits a pair (g, A) such that R(g,A)tw>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {tw }}_{(g,A)}>0$$\end{document} if and only if the index αc(M,L):=indDL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha ^c(M,L):={\text {ind}}D_L$$\end{document} vanishes in Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_n$$\end{document}. In this paper we introduce a scalar-valued generalized scalar curvatureR(g,A)gen:=Rg-2|Ω|op\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {gen }}_{(g,A)}:=R_g - 2|\Omega |_{op}$$\end{document}, where |Ω|op\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\Omega |_{op}$$\end{document} is the pointwise operator norm of Clifford multiplication c(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c(\Omega )$$\end{document}, acting on spinors. We show that the positivity condition on the operator R(g,A)tw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {tw }}_{(g,A)}$$\end{document} is equivalent to the positivity of the scalar function R(g,A)gen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {gen }}_{(g,A)}$$\end{document}. We prove a corresponding trichotomy theorem concerning the curvature R(g,A)gen\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {gen }}_{(g,A)}$$\end{document}, and study its implications. We also show that the space Rgen+(M,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}^{{\textrm{gen}+}}(M,L)$$\end{document} of pairs (g, A) with R(g,A)gen>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{\text {gen }}_{(g,A)}>0$$\end{document} has non-trivial topology, and address a conjecture about non-triviality of the “index difference” map.
引用
收藏
相关论文
共 29 条
  • [1] Bär Christian(1992)Lower eigenvalue estimates for Dirac operators Math. Ann. 293 39-46
  • [2] Hattori Akio(1978)-structures and Invent. Math. 48 7-31
  • [3] Botvinnik Boris(2023)-actions J. Reine Angew. Math. 803 103-136
  • [4] Rosenberg Jonathan(1975)Positive scalar curvature on manifolds with fibered singularities J. Differ. Geom. 10 113-134
  • [5] Kazdan JL(1975)Scalar curvature and conformal deformation of Riemannian structure Invent. Math. 28 227-230
  • [6] Warner FW(2001)A direct approach to the determination of Gaussian and scalar curvature functions Ann. Global Anal. Geom. 20 301-324
  • [7] Kazdan JL(2017) structures and scalar curvature estimates Trans. Amer. Math. Soc. 369 7469-7507
  • [8] Warner FW(2017)The two definitions of the index difference Invent. Math. 209 749-835
  • [9] Goette S(2019)Infinite loop spaces and positive scalar curvature Geom. Topol. 23 1549-1610
  • [10] Semmelmann U(1986)Infinite loop spaces and positive scalar curvature in the presence of a fundamental group Comm. Math. Phys. 104 151-162