Machine learning-based risk prediction model for arteriovenous fistula stenosis

被引:0
作者
Shu, Peng [1 ]
Huang, Ling [1 ]
Huo, Shanshan [1 ]
Qiu, Jun [1 ]
Bai, Haitao [1 ]
Wang, Xia [1 ]
Xu, Fang [1 ]
机构
[1] Huazhong Univ Sci & Technol, Cent Hosp Wuhan, Tongji Med Coll, 26 Shengli St, Wuhan, Hubei, Peoples R China
关键词
Machine learning; Arteriovenous fistula; Stenosis; Complications; Predictive modeling;
D O I
10.1186/s40001-025-02490-x
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Background Arteriovenous fistula stenosis is a common complication in hemodialysis patients, yet effective predictive tools are lacking. This study aims to develop an interpretable machine learning model for stenosis risk prediction. Methods Clinical data from 974 patients (55 features) undergoing arteriovenous fistula dialysis at The Central Hospital of Wuhan (2017-2024) were analyzed retrospectively. The dataset was split into training (70%) and test (30%) sets. Seven models-Random Forest, XGBoost, Support Vector Machine, Logistic Regression, K-Nearest Neighbors, Artificial Neural Network, and Decision Tree-were trained. Performance was evaluated using F1 score, accuracy, specificity, precision, recall, and AUC-ROC. SHAP values identified key predictors in the optimal model. Results XGBoost achieved the highest AUC (0.829, 95% CI 0.785-0.880). SHAP analysis highlighted seven critical predictors: number of surgeries, prothrombin time activity, lymphocyte count, fistula duration, triglycerides, vitamin B12, and C-reactive protein. Conclusion The XGBoost model effectively predicts arteriovenous fistula stenosis risk using clinical data. SHAP explanations enhance clinical interpretability, aiding personalized care strategies.
引用
收藏
页数:14
相关论文
共 36 条
[1]   Physical examination of the hemodialysis arteriovenous fistula to detect early dysfunction [J].
Abreo, Kenneth ;
Amin, Bakhtiar M. ;
Abreo, Adrian P. .
JOURNAL OF VASCULAR ACCESS, 2019, 20 (01) :7-11
[2]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[3]   Preoperative Venous Intimal Hyperplasia, Postoperative Arteriovenous Fistula Stenosis, and Clinical Fistula Outcomes [J].
Allon, Michael ;
Robbin, Michelle L. ;
Young, Carlton J. ;
Deierhoi, Mark H. ;
Goodman, Jeremy ;
Hanaway, Michael ;
Lockhart, Mark E. ;
Litovsky, Silvio .
CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2013, 8 (10) :1750-1755
[4]   Patency and factors related to patency after percutaneous transluminal angioplasty for inflow arterial stenosis in native arteriovenous fistula dysfunction: a single-center retrospective study [J].
Chen, Bo ;
Tu, Bo ;
Lai, Qiquan ;
Chen, Ling ;
Gao, Xuejing ;
Zhou, Yu ;
Zhang, Xi ;
Lv, Qiong ;
Wan, Ziming .
SCIENTIFIC REPORTS, 2024, 14 (01)
[5]  
Chen WD., 2009, Chin J Blood Purif, V8, P319
[6]  
Chinese Hospital Association Blood Purification Center Branch Vascular Access Work Group, 2019, Chin J Blood Purif, V18, P365
[7]   Application of machine learning in predicting blood flow and red cell distribution in capillary vessel networks [J].
Ebrahimi, Saman ;
Bagchi, Prosenjit .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2022, 19 (193)
[8]  
Feng WJ., 2021, China Modern Doctor, V59, P49
[9]  
GBD CKD Collaboration, 2020, Lancet, V395, P709, DOI [10.1016/S0140-6736(20)30045-3, DOI 10.1016/S0140-6736(20)30045-3]
[10]  
Gong MQ., 2019, Chin J Front Med Sci, V11, P134