Existence and uniqueness of solutions for Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Caputo fractional neutral sequential differential equations on time scales

被引:0
作者
Najat Chefnaj [1 ]
Khalid Hilal [1 ]
Ahmed Kajouni [1 ]
机构
[1] Sultan Moulay Slimane University,Applied Mathematics and Scientific Computing Laboratory
关键词
-fractional derivative; -fractional; Time scale; Sequential neutral fractional differential equations;
D O I
10.1007/s12190-024-02179-0
中图分类号
学科分类号
摘要
In this paper, we establish the existence and uniqueness of solutions for a class of initial value problems involving implicit fractional differential equations with a fractional Ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Psi $$\end{document}-Caputo derivative on time scales. We employ fixed point theorems by Banach, a nonlinear alternative of Leray-Schauder’s type, and Krasnoselskii’s theorem to establish these results. Finally, we present two examples to demonstrate the effectiveness of the obtained analytical results.
引用
收藏
页码:5251 / 5268
页数:17
相关论文
共 29 条
[1]  
Alharbi AR(2022)Exact solitary wave and numerical solutions for geophysical KdV equation J. King Saud Univ. Sci. 34 2340160-237
[2]  
Almatrafi MB(2023)Construction of closed form soliton solutions to the space-time fractional symmetric regularized long wave equation using two reliable methods Fractals 31 252-2226
[3]  
Almatrafi MB(2023)Solitary wave solutions to a fractional model using the improved modified extended tanh-function method Fract. Fract. 7 230-1305
[4]  
Almatrafi MB(2015)A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration Signal Process 107 2219-36
[5]  
Benkhettou N(2023)Existence of the solution for hybrid differential equation with Caputo–Fabrizio fractional derivative Filomat 37 1292-10
[6]  
da Brito Cruz AMC(2016)On a fractional diffrential inclusion with maxima Frac. Calc. Appl. Anal. 19 24-371
[7]  
Torres DFM(2023)Boundary problems for fractional differential equations involving the generalized Caputo–Fabrizio fractional derivative in the Turk. J. Sci. 8 1-145
[8]  
Chefnaj N(2023)-metric Space J. Math. Sci. 271 360-undefined
[9]  
Hilal K(2022)Study of nonlocal boundary value problems for hybrid differential equations involving Results Nonlinear Anal. 5 6-undefined
[10]  
Kajouni A(2022)-Caputo Fractional Derivative with measures of noncompactness Fixed Point Theory Algorithms Sci. Eng. 2022 129-undefined