Development of a prediction model for clinically-relevant fatigue: a multi-cancer approach

被引:0
作者
Adiprakoso, Dhirendra [1 ]
Katsimpokis, Dimitris [2 ]
Oerlemans, Simone [2 ]
Ezendam, Nicole P. M. [2 ,3 ]
van Maaren, Marissa C. [1 ,2 ]
van Til, Janine A. [1 ]
van der Heijden, Thijs G. W. [5 ]
Mols, Floortje [2 ,3 ]
Aben, Katja K. H. [2 ,6 ]
Vink, Geraldine R. [2 ,4 ]
Koopman, Miriam [4 ]
van de Poll-franse, Lonneke V. [2 ,3 ,5 ]
de Rooij, Belle H. [2 ,3 ]
机构
[1] Univ Twente, Tech Med Ctr, Dept Hlth Technol & Serv Res HTSR, Enschede, Netherlands
[2] Netherlands Comprehens Canc Org IKNL, Dept Res & Dev, Utrecht, Netherlands
[3] Tilburg Univ, CoRPS Ctr Res Psychol Disorders & Somat Dis, Dept Med & Clin Psychol, Tilburg, Netherlands
[4] Univ Utrecht, Univ Med Ctr Utrecht, Dept Med Oncol, Utrecht, Netherlands
[5] Netherlands Canc Inst, Div Psychosocial Res & Epidemiol, Amsterdam, Netherlands
[6] Radboud Univ Nijmegen, Dept IQ Hlth, Med Ctr, Nijmegen, Netherlands
关键词
Prediction modelling; Machine-learning; Cancer-related fatigue; Clinically relevant fatigue; Health-related quality of life; Cancer survivors; EORTC QLQ-C30; VALIDATION; INFRASTRUCTURE; SURVIVORS; SYMPTOMS; REGISTRY; SUPPORT;
D O I
10.1007/s11136-024-03807-9
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
PurposeFatigue is the most prevalent symptom across cancer types. To support clinicians in providing fatigue-related supportive care, this study aims to develop and compare models predicting clinically relevant fatigue (CRF) occurring between two and three years after diagnosis, and to assess the validity of the best-performing model across diverse cancer populations.MethodsPatients with non-metastatic bladder, colorectal, endometrial, ovarian, or prostate cancer who completed a questionnaire within three months after diagnosis and a subsequent questionnaire between two and three years thereafter, were included. Predictor variables included clinical, socio-demographic, and patient-reported variables. The outcome was CRF (EORTC QLQC30 fatigue >= 39). Logistic regression using LASSO selection was compared to more advanced Machine Learning (ML) based models, including Extreme gradient boosting (XGBoost), support vector machines (SVM), and artificial neural networks (ANN). Internal-external cross-validation was conducted on the best-performing model.Results3160 patients were included. The logistic regression model had the highest C-statistic (0.77) and balanced accuracy (0.65), both indicating good discrimination between patients with and without CRF. However, sensitivity was low across all models (0.22-0.37). Following internal-external validation, performance across cancer types was consistent (C-statistics 0.73-0.82).ConclusionAlthough the models' discrimination was good, the low balanced accuracy and poor calibration in the presence of CRF indicates a relatively high likelihood of underdiagnosis of future CRF. Yet, the clinical applicability of the model remains uncertain. The logistic regression performed better than the ML-based models and was robust across cohorts, suggesting an advantage of simpler models to predict CRF.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 54 条
  • [1] THE EUROPEAN-ORGANIZATION-FOR-RESEARCH-AND-TREATMENT-OF-CANCER QLQ-C30 - A QUALITY-OF-LIFE INSTRUMENT FOR USE IN INTERNATIONAL CLINICAL-TRIALS IN ONCOLOGY
    AARONSON, NK
    AHMEDZAI, S
    BERGMAN, B
    BULLINGER, M
    CULL, A
    DUEZ, NJ
    FILIBERTI, A
    FLECHTNER, H
    FLEISHMAN, SB
    DEHAES, JCJM
    KAASA, S
    KLEE, M
    OSOBA, D
    RAZAVI, D
    ROFE, PB
    SCHRAUB, S
    SNEEUW, K
    SULLIVAN, M
    TAKEDA, F
    [J]. JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1993, 85 (05) : 365 - 376
  • [2] Machine learning in clinical decision making
    Adlung, Lorenz
    Cohen, Yotam
    Mor, Uria
    Elinav, Eran
    [J]. MED, 2021, 2 (06): : 642 - 665
  • [3] [Anonymous], What Is R?
  • [4] The EORTC QLQ-C30 (Version 3.0) Quality of Life questionnaire:: Validation study for Spain with head and neck cancer patients
    Arraras, JI
    Arias, F
    Tejedor, M
    Pruja, E
    Marcos, M
    Martínez, E
    Valerdi, J
    [J]. PSYCHO-ONCOLOGY, 2002, 11 (03) : 249 - 256
  • [5] Development of machine learning models to predict cancer-related fatigue in Dutch breast cancer survivors up to 15 years after diagnosis
    Beenhakker, Lian
    Wijlens, Kim A. E.
    Witteveen, Annemieke
    Heins, Marianne
    Korevaar, Joke C.
    de Ligt, Kelly M.
    Bode, Christina
    Vollenbroek-Hutten, Miriam M. R.
    Siesling, Sabine
    [J]. JOURNAL OF CANCER SURVIVORSHIP, 2023, 19 (2) : 580 - 593
  • [6] Brodersen Kay H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P3121, DOI 10.1109/ICPR.2010.764
  • [7] Prospective Dutch colorectal cancer cohort: an infrastructure for long-term observational, prognostic, predictive and (randomized) intervention research
    Burbach, J. P. M.
    Kurk, S. A.
    van den Braak, R. R. J. Coebergh
    Dik, V. K.
    May, A. M.
    Meijer, G. A.
    Punt, C. J. A.
    Vink, G. R.
    Los, M.
    Hoogerbrugge, N.
    Huijgens, P. C.
    Ijzermans, J. N. M.
    Kuipers, E. J.
    de Noo, M. E.
    Pennings, J. P.
    van der Velden, A. M. T.
    Verhoef, C.
    Siersema, P. D.
    van Oijen, M. G. H.
    Verkooijen, H. M.
    Koopman, M.
    [J]. ACTA ONCOLOGICA, 2016, 55 (11) : 1273 - 1280
  • [8] A comprehensive survey on support vector machine classification: Applications, challenges and trends
    Cervantes, Jair
    Garcia-Lamont, Farid
    Rodriguez-Mazahua, Lisbeth
    Lopez, Asdrubal
    [J]. NEUROCOMPUTING, 2020, 408 : 189 - 215
  • [9] A NEW METHOD OF CLASSIFYING PROGNOSTIC CO-MORBIDITY IN LONGITUDINAL-STUDIES - DEVELOPMENT AND VALIDATION
    CHARLSON, ME
    POMPEI, P
    ALES, KL
    MACKENZIE, CR
    [J]. JOURNAL OF CHRONIC DISEASES, 1987, 40 (05): : 373 - 383
  • [10] SMOTE: Synthetic minority over-sampling technique
    Chawla, Nitesh V.
    Bowyer, Kevin W.
    Hall, Lawrence O.
    Kegelmeyer, W. Philip
    [J]. 2002, American Association for Artificial Intelligence (16)