The Infiniteness of the Number of Eigenvalues of the Schrodinger Operator of a System of Two Particles on a Lattice

被引:0
作者
Abdullaev, J. I. [1 ,2 ]
Khalkhuzhaev, A. M. [1 ,2 ,3 ]
Makhmudov, Kh. Sh. [1 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Acad Sci Uzbek, Romanovskii Inst Math, Tashkent 100174, Uzbekistan
[3] Bukhara State Univ, Bukhara 200100, Uzbekistan
关键词
Schrodinger operator; Hamiltonian; eigenvalue; essential spectrum; invariant subspaces; lattice; quasimomentum; eigenfunction; asymptotics; PERTURBATION-THEORY; FRIEDRICHS MODELS; DISCRETE SPECTRUM; BOUND-STATES; LOCATION;
D O I
10.1134/S199508022460599X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Hamiltonian associated with a system of two particles (bosons) on a two-dimensional lattice Z(2) with a potential of a certain type. The Schrodinger operator H(k) of the system for k = pi = (pi, pi) (where k = (k(1), k(2))) is the total quasimomentum) has an infinite number of eigenvalues. It is shown that z(0)(p) = 4 - (v) over bar (0) is simple, z(1)(p) = 4 - (v) over bar (1) is a double, z(2)(pi) = 4 - (v) over bar (2) is a fourfold eigenvalue, while the remaining eigenvalues z(n)(p) = 4- (v) over bar (n), n >= 3, are fivefold. We prove that all multiple eigenvalues of the H(p) are split into non-degenerate eigenvalues. We obtain asymptotic formulas with the accuracy of beta(2) for eigenvalues of the Schrodinger operator H((pi - 2 beta, pi)).
引用
收藏
页码:4828 / 4845
页数:18
相关论文
共 27 条
[1]   Finiteness of the number of eigenvalues of the two-particle Schrodinger operator on a lattice [J].
Abdullaev, J. I. ;
Ikromov, I. A. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (03) :1299-1312
[2]   Bound states of a system of two fermions on a one-dimensional lattice [J].
Abdullaev, J. I. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (01) :486-495
[3]   Perturbation theory for the two-particle Schrodinger operator on a one-dimensional lattice [J].
Abdullaev, JI .
THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 145 (02) :1551-1558
[4]   BOUND STATES OF A TWO-BOSON SYSTEM ON A TWO-DIMENSIONAL LATTICE [J].
Abdullaev, Zh. I. ;
Kuliev, K. D. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2016, 186 (02) :231-250
[5]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[6]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/S00023-004-0181-9, 10.1007/s00023-004-0181-9]
[7]   The threshold effects for a family of Friedrichs models under rank one perturbations [J].
Albeverio, Sergio ;
Lakaev, Saidakhmat N. ;
Muminov, Zahriddin I. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) :1152-1168
[8]   Conditions for the Existence of Eigenvalues of a Three-Particle Lattice Model Hamiltonian [J].
Bahronov, B. I. ;
Rasulov, T. H. ;
Rehman, M. .
RUSSIAN MATHEMATICS, 2023, 67 (07) :1-8
[9]   The Number and Location of Eigenvalues of the Two Particle Discrete Schrodinger Operators [J].
Bozorov, I. N. ;
Khamidov, Sh. I. ;
Lakaev, S. N. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (11) :3079-3090
[10]  
Kato T., 1995, PERTURBATION THEORY, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9, 10.1007/978-3-642-53393-8]