Quantum Harmonic Analysis on Locally Compact Abelian Groups

被引:4
作者
Fulsche, Robert [1 ]
Galke, Niklas [2 ]
机构
[1] Leibniz Univ Hannover, Inst Anal, Welfengarten 1, D-30167 Hannover, Germany
[2] Univ Autonoma Barcelona, Dept Phys, Edifici C, Bellaterra 08193, Cerdanyola Del, Spain
关键词
Quantum harmonic analysis; Locally compact abelian group; Operator convolution; COVARIANT; REPRESENTATIONS; OPERATORS;
D O I
10.1007/s00041-024-10140-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We extend the notions of quantum harmonic analysis, as introduced in R. Werner's paper from 1984 (J Math Phys 25(5):1404-1411), to abelian phase spaces, by which we mean a locally compact abelian group endowed with a Heisenberg multiplier. In this way, we obtain a joint harmonic analysis of functions and operators for each such phase space. Throughout, we spend significant extra effort to include also phase spaces which are not second countable. We obtain most results from Werner's paper for these general phase spaces, up to Wiener's approximation theorem for operators. In addition, we extend certain of those results (most notably Wiener's approximation theorem) to operators acting on certain coorbit spaces affiliated with the phase space.
引用
收藏
页数:58
相关论文
共 57 条
[1]  
Baggett L., 1973, Journal of Functional Analysis, V14, P299, DOI 10.1016/0022-1236(73)90075-X
[2]   Self-adjointness of Toeplitz operators on the Segal-Bargmann space [J].
Bauer, Wolfram ;
van Luijk, Lauritz ;
Stottmeister, Alexander ;
Werner, Reinhard F. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (04)
[3]   A Quantum Harmonic Analysis Approach to Segal Algebras [J].
Berge, Eirik ;
Berge, Stine Marie ;
Fulsche, Robert .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2024, 96 (03)
[4]   Affine quantum harmonic analysis [J].
Berge, Eirik ;
Berge, Stine Marie ;
Luef, Franz ;
Skrettingland, Eirik .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 282 (04)
[5]   A Primer on Coorbit Theory [J].
Berge, Eirik .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2021, 28 (01)
[6]   The affine Wigner distribution [J].
Berge, Eirik ;
Berge, Stine Marie ;
Luef, Franz .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 56 :150-175
[7]  
Bergh J., 1976, GRUNDLEHREN MATH WIS, V223
[8]   Positive operator valued measures covariant with respect to an irreducible representation [J].
Cassinelli, G ;
De Vito, E ;
Toigo, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) :4768-4775
[9]   Atomic decomposition via projective group representations [J].
Christensen, O .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1996, 26 (04) :1289-1312
[10]  
Dammeier L, 2023, QUANTUM-AUSTRIA, V7