AlphaFold3 versus experimental structures: assessment of the accuracy in ligand-bound G protein-coupled receptors

被引:3
作者
He, Xin-heng [1 ,2 ]
Li, Jun-rui [1 ]
Shen, Shi-yi [1 ,2 ]
Xu, H. Eric [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Mat Med, State Key Lab Drug Res, CAS Key Lab Receptor Res, Shanghai 201203, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
ACTA PHARMACOLOGICA SINICA | 2024年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
AlphaFold; structure-based drug design; artificial intelligence; GPCR; structural biology; GPCR; DYNAMICS;
D O I
10.1038/s41401-024-01429-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
G protein-coupled receptors (GPCRs) are critical drug targets involved in numerous physiological processes, yet many of their structures remain unresolved due to inherent flexibility and diverse ligand interactions. This study systematically evaluates the accuracy of AlphaFold3-predicted GPCR structures compared to experimentally determined structures, with a primary focus on ligand-bound states. Our analysis reveals that while AlphaFold3 shows improved performance over AlphaFold2 in predicting overall GPCR backbone architecture, significant discrepancies persist in ligand-binding poses, particularly for ions, peptides, and proteins. Despite advancements, these limitations constrain the utility of AlphaFold3 models in functional studies and structure-based drug design, where high-resolution details of ligand interactions are crucial. We assess the accuracy of predicted structures across various ligand types, quantifying deviations in binding pocket geometries and ligand orientations. Our findings highlight specific challenges in the computational prediction of ligand-bound GPCR structures, emphasizing areas where further refinement is needed. This study provides valuable insights for researchers using AlphaFold3 in GPCR studies, underscores the ongoing necessity for experimental structure determination, and offers direction for improving protein-ligand interaction predictions in future computational models.
引用
收藏
页码:1111 / 1122
页数:12
相关论文
共 44 条
  • [1] Accurate structure prediction of biomolecular interactions with AlphaFold 3
    Abramson, Josh
    Adler, Jonas
    Dunger, Jack
    Evans, Richard
    Green, Tim
    Pritzel, Alexander
    Ronneberger, Olaf
    Willmore, Lindsay
    Ballard, Andrew J.
    Bambrick, Joshua
    Bodenstein, Sebastian W.
    Evans, David A.
    Hung, Chia-Chun
    O'Neill, Michael
    Reiman, David
    Tunyasuvunakool, Kathryn
    Wu, Zachary
    Zemgulyte, Akvile
    Arvaniti, Eirini
    Beattie, Charles
    Bertolli, Ottavia
    Bridgland, Alex
    Cherepanov, Alexey
    Congreve, Miles
    Cowen-Rivers, Alexander I.
    Cowie, Andrew
    Figurnov, Michael
    Fuchs, Fabian B.
    Gladman, Hannah
    Jain, Rishub
    Khan, Yousuf A.
    Low, Caroline M. R.
    Perlin, Kuba
    Potapenko, Anna
    Savy, Pascal
    Singh, Sukhdeep
    Stecula, Adrian
    Thillaisundaram, Ashok
    Tong, Catherine
    Yakneen, Sergei
    Zhong, Ellen D.
    Zielinski, Michal
    Zidek, Augustin
    Bapst, Victor
    Kohli, Pushmeet
    Jaderberg, Max
    Hassabis, Demis
    Jumper, John M.
    [J]. NATURE, 2024, 630 (8016) : 493 - 500
  • [2] GPCR mediated regulation of synaptic transmission
    Betke, Katherine M.
    Wells, Christopher A.
    Hamm, Heidi E.
    [J]. PROGRESS IN NEUROBIOLOGY, 2012, 96 (03) : 304 - 321
  • [3] AlphaFold2 protein structure prediction: Implications for drug discovery
    Borkakoti, Neera
    Thornton, Janet M.
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 78
  • [4] AlphaFold predictions of fold-switched conformations are driven by structure memorization
    Chakravarty, Devlina
    Schafer, Joseph W.
    Chen, Ethan A.
    Thole, Joseph F.
    Ronish, Leslie A.
    Lee, Myeongsang
    Porter, Lauren L.
    [J]. NATURE COMMUNICATIONS, 2024, 15 (01)
  • [5] Ciancetta A, 2018, METHODS MOL BIOL, V1705, P45, DOI 10.1007/978-1-4939-7465-8_3
  • [6] Corso G., 2023, INT C LEARN REPR
  • [7] Corso G, 2024, INT C LEARN REPR VIE
  • [8] Probing Structural Perturbation of Biomolecules by Extracting Cryo-EM Data Heterogeneity
    DeVore, Kira
    Chiu, Po-Lin
    [J]. BIOMOLECULES, 2022, 12 (05)
  • [9] Cryo-electron microscopy for GPCR research and drug discovery in endocrinology and metabolism
    Duan, Jia
    He, Xin-Heng
    Li, Shu-Jie
    Xu, H. Eric
    [J]. NATURE REVIEWS ENDOCRINOLOGY, 2024, 20 (06) : 349 - 365
  • [10] GPCR activation and GRK2 assembly by a biased intracellular agonist
    Duan, Jia
    Liu, Heng
    Zhao, Fenghui
    Yuan, Qingning
    Ji, Yujie
    Cai, Xiaoqing
    He, Xinheng
    Li, Xinzhu
    Li, Junrui
    Wu, Kai
    Gao, Tianyu
    Zhu, Shengnan
    Lin, Shi
    Wang, Ming-Wei
    Cheng, Xi
    Yin, Wanchao
    Jiang, Yi
    Yang, Dehua
    Xu, H. Eric
    [J]. NATURE, 2023, 620 (7974) : 676 - +