Sequential oxygen evolution and decoupled water splitting via electrochemical redox reaction of nickel hydroxides

被引:28
作者
Wei, Jie [1 ,2 ]
Shao, Yangfan [1 ,2 ]
Xu, Jingbo [1 ,2 ]
Yin, Fang [1 ,2 ]
Li, Zejian [1 ,2 ]
Qian, Haitao [1 ,2 ]
Wei, Yinping [1 ,2 ]
Chang, Liang [1 ,2 ]
Han, Yu [1 ,2 ]
Li, Jia [1 ,2 ]
Gan, Lin [1 ,2 ]
机构
[1] Tsinghua Univ, Inst Mat Res, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Shenzhen Key Lab Adv Layered Mat Value Added Appli, Shenzhen 518055, Peoples R China
基金
国家重点研发计划; 美国国家科学基金会;
关键词
PLANE-WAVE; REACTION DYNAMICS; ELECTROCATALYSTS; OXIDE; EFFICIENT; STATES; COHP;
D O I
10.1038/s41467-024-53310-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Alkaline water electrolysis is a promising low-cost strategy for clean and sustainable hydrogen production but is largely limited by the sluggish anodic oxygen evolution reaction and the challenges in maintaining adequate separation between H2 and O2. Here, we reveal an anodic-cathodic sequential oxygen evolution process via electrochemical oxidation and subsequent reduction of Ni hydroxides, enabling much lower overpotentials than conventional anodic oxygen evolution. By using (isotope-labeled) differential electrochemical mass spectrometry and in situ Raman spectroscopy combined with density functional theory calculations, we evidence that the sequential oxygen evolution originates from the electrochemical oxidation of Ni hydroxides to NiOO- active species while undergoing a different, reductive step of NiOO- for the final release of O2 due to weakened Ni-O covalency. Based on this sequential process, we propose and demonstrate a hybrid water electrolysis and energy storage device, which enables time-decoupled hydrogen and oxygen evolution and electrochemical energy storage in the Ni hydroxides. The authors report a sequential oxygen evolution process via electrochemical oxidation and reduction of Ni hydroxides, allowing for decoupled oxygen evolution and hydrogen evolution during water splitting and energy storage in the Ni hydroxides.
引用
收藏
页数:12
相关论文
共 69 条
[1]   Spectroscopic and Electrokinetic Evidence for a Bifunctional Mechanism of the Oxygen Evolution Reaction** [J].
Bai, Lichen ;
Lee, Seunghwa ;
Hu, Xile .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (06) :3095-3103
[2]   Host, Suppressor, and Promoter-The Roles of Ni and Fe on Oxygen Evolution Reaction Activity and Stability of NiFe Alloy Thin Films in Alkaline Media [J].
Bao, Fuxi ;
Kemppainen, Erno ;
Dorbandt, Iris ;
Xi, Fanxing ;
Bors, Radu ;
Maticiuc, Natalia ;
Wenisch, Robert ;
Bagacki, Rory ;
Schary, Christian ;
Michalczik, Ursula ;
Bogdanoff, Peter ;
Lauermann, Iver ;
van de Krol, Roel ;
Schlatmann, Rutger ;
Calnan, Sonya .
ACS CATALYSIS, 2021, 11 (16) :10537-10552
[3]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[4]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[5]   Best Practices in Pursuit of Topics in Heterogeneous Electrocatalysis [J].
Chen, Jingguang G. ;
Jones, Christopher W. ;
Linic, Suljo ;
Stamenkovic, Vojislav R. .
ACS CATALYSIS, 2017, 7 (09) :6392-6393
[6]   Fe1N4-O1 site with axial Fe-O coordination for highly selective CO2 reduction over a wide potential range [J].
Chen, Zhiqiang ;
Huang, Aijian ;
Yu, Ke ;
Cui, Tingting ;
Zhuang, Zewen ;
Liu, Shoujie ;
Li, Jianzhan ;
Tu, Renyong ;
Sun, Kaian ;
Tan, Xin ;
Zhang, Jiaqi ;
Liu, Di ;
Zhang, Yu ;
Jiang, Peng ;
Pan, Yuan ;
Chen, Chen ;
Peng, Qing ;
Li, Yadong .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3430-3437
[7]   Dynamic stability of active sites in hydr(oxy)oxides for the oxygen evolution reaction [J].
Chung, Dong Young ;
Lopes, Pietro P. ;
Martins, Pedro Farinazzo Bergamo Dias ;
He, Haiying ;
Kawaguchi, Tomoya ;
Zapol, Peter ;
You, Hoydoo ;
Tripkovic, Dusan ;
Strmcnik, Dusan ;
Zhu, Yisi ;
Seifert, Soenke ;
Lee, Sungsik ;
Stamenkovic, Vojislav R. ;
Markovic, Nenad M. .
NATURE ENERGY, 2020, 5 (03) :222-230
[8]   Differential Electrochemical Mass Spectrometer Cell Design for Online Quantification of Products Produced during Electrochemical Reduction of CO2 [J].
Clark, Ezra L. ;
Singh, Meenesh R. ;
Kwon, Youngkook ;
Bell, Alexis T. .
ANALYTICAL CHEMISTRY, 2015, 87 (15) :8013-8020
[9]   Evidence of Mars-Van-Krevelen Mechanism in the Electrochemical Oxygen Evolution on Ni-Based Catalysts [J].
de Araffljo, Jorge Ferreira ;
Dionigi, Fabio ;
Merzdorf, Thomas ;
Oh, Hyung-Suk ;
Strasser, Peter .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (27) :14981-14988
[10]   A self-circulating pathway for the oxygen evolution reaction [J].
Deng, Bohan ;
Yu, Guangqiang ;
Zhao, Wei ;
Long, Yuanzheng ;
Yang, Cheng ;
Du, Peng ;
He, Xian ;
Zhang, Zhuting ;
Huang, Kai ;
Li, Xibo ;
Wu, Hui .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :5210-5219