Algorithms for p-adic heights on hyperelliptic curves of arbitrary reduction

被引:0
作者
Bianchi, Francesca
Kaya, Enis [1 ]
Mueller, J. Steffen [2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Heverlee, Belgium
[2] Univ Groningen, Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
关键词
QUADRATIC CHABAUTY; CANONICAL HEIGHTS; RATIONAL-POINTS; VARIETIES; GENUS-2;
D O I
10.1007/s40993-024-00602-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we develop an algorithm for computing Coleman-Gross (and hence Nekov & aacute;& rcaron;) p-adic heights on hyperelliptic curves over number fields with arbitrary reduction type above p. This height is defined as a sum of local heights at each finite place and we use algorithms for Vologodsky integrals, developed by Katz and the second-named author, to compute the local heights above p. We also discuss an alternative method to compute these for odd degree genus 2 curves via p-adic sigma functions, via work of the first-named author. For both approaches one needs to choose a splitting of the Hodge filtration. A canonical choice for this is due to Blakestad in the case of an odd degree curve of genus 2 that has semistable ordinary reduction at p. We provide an algorithm to compute Blakestad's splitting, which is conjecturally the unit root splitting for the action of Frobenius. We give several numerical examples, including the first worked quadratic Chabauty example in the literature for a curve with bad reduction.
引用
收藏
页数:21
相关论文
共 48 条
[1]  
Balakrishnan J.S., 2019, Errata for Computing local -adic height pairings on hyperelliptic curves
[2]   QUADRATIC CHABAUTY AND RATIONAL POINTS, I: p-ADIC HEIGHTS [J].
Balakrishnan, Jennifer S. ;
Dogra, Netan .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (11) :1981-2038
[3]   COMPUTING INTEGRAL POINTS ON HYPERELLIPTIC CURVES USING QUADRATIC CHABAUTY [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon ;
Mueller, J. Steffen .
MATHEMATICS OF COMPUTATION, 2017, 86 (305) :1403-1434
[4]   Quadratic Chabauty: p-adic heights and integral points on hyperelliptic curves [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon ;
Mueller, J. Steffen .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2016, 720 :51-79
[5]   Coleman integration for even-degree models of hyperelliptic curves [J].
Balakrishnan, Jennifer S. .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2015, 18 (01) :258-265
[6]   A p-ADIC ANALOGUE OF THE CONJECTURE OF BIRCH AND SWINNERTON-DYER FOR MODULAR ABELIAN VARIETIES [J].
Balakrishnan, Jennifer S. ;
Mueller, J. Steffen ;
Stein, William A. .
MATHEMATICS OF COMPUTATION, 2016, 85 (298) :983-1016
[7]   Coleman-Gross height pairings and the p-adic sigma function [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 698 :89-104
[8]   Computing Local p-adic Height Pairings on Hyperelliptic Curves [J].
Balakrishnan, Jennifer S. ;
Besser, Amnon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (11) :2405-2444
[9]  
Balakrishnan JS, 2010, LECT NOTES COMPUT SC, V6197, P16, DOI 10.1007/978-3-642-14518-6_6
[10]  
Bernardi Dominique., 1981, SEMINAR NUMBER THEOR, V12, P1