Elliptic fourth-order operators with Wentzell boundary conditions on Lipschitz domains

被引:1
作者
Ploss, David [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Engler str 2, D-76131 Karlsruhe, Germany
关键词
Boundary value problem; Lipschitz boundary; Wentzell boundary condition; Generalized trace; Analytic semigroup; Eventual positivity; REGULARITY;
D O I
10.1007/s00028-024-01015-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For bounded domains Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with Lipschitz boundary Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, we investigate boundary value problems for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary conditions. Using form methods, we begin by showing general results for an even wider class of operators of type A=B & lowast;B0-NbB gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {A}}=\begin{pmatrix} B<^>*B & 0 \\ -{\mathscr {N}}<^>{\mathfrak {b}}B & \gamma \end{pmatrix}, \end{aligned}$$\end{document}where B is associated to a quadratic form b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {b}}$$\end{document} and Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}<^>{{\mathfrak {b}}}$$\end{document} an abstractly defined co-normal Neumann trace. Even in this general setting, we prove generation of an analytic semigroup on the product space H:=L2(Omega)xL2(Gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}:=L<^>2(\Omega ) \times L<^>2(\Gamma )$$\end{document}. Using recent results concerning weak co-normal traces, we apply our abstract theory to the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for operators in divergence form B=-divQ del\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=-\mathop {{div} }Q \nabla $$\end{document} with Q is an element of C1,1(Omega<overline>,Rdxd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in C<^>{1,1}({\overline{\Omega }},{\mathbb {R}}<^>{d\times d}),$$\end{document} also obtaining H & ouml;lder-regularity of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.
引用
收藏
页数:43
相关论文
共 50 条
[41]   Solutions to a boundary value problem of a fourth-order impulsive differential equation [J].
Jingli Xie ;
Zhiguo Luo .
Boundary Value Problems, 2013
[42]   On the Nonexistence and Existence of Solutions for a Fourth-Order Discrete Boundary Value Problem [J].
Shenghuai Huang ;
Zhan Zhou .
Advances in Difference Equations, 2009
[43]   Positive solution for a class of nonlinear fourth-order boundary value problem [J].
Zhang, Yanhong ;
Chen, Li .
AIMS MATHEMATICS, 2022, 8 (01) :1014-1021
[44]   MULTIPLE POSITIVE SOLUTIONS TO A FOURTH-ORDER BOUNDARY-VALUE PROBLEM [J].
Cabada, Alberto ;
Precup, Radu ;
Saavedra, Lorena ;
Tersian, Stepan A. .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
[45]   Existence and multiplicity of solutions of a kind of fourth-order boundary value problem [J].
Li, FY ;
Zhang, Q ;
Liang, ZP .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (05) :803-816
[46]   Solutions to a boundary value problem of a fourth-order impulsive differential equation [J].
Xie, Jingli ;
Luo, Zhiguo .
BOUNDARY VALUE PROBLEMS, 2013,
[47]   Existence of solutions for some fourth-order boundary value problems with parameters [J].
Yang, Yang ;
Zhang, Jihui .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (04) :1364-1375
[48]   BOUNDARY VALUE PROBLEMS IN LIPSCHITZ DOMAINS FOR EQUATIONS WITH LOWER ORDER COEFFICIENTS [J].
Sakellaris, Georgios .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (08) :5947-5989
[49]   Boundary value problems for elliptic partial differential operators on bounded domains [J].
Behrndt, Jussi ;
Langer, Matthias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 243 (02) :536-565
[50]   CONDITIONS FOR SOLVABILITY AND COERCIVENESS OF A FOURTH-ORDER DIFFERENTIAL EQUATION WITH AN INTERMEDIATE COEFFICIENT [J].
Ospanov, K. N. ;
Moldagali, Ye. O. .
JOURNAL OF MATHEMATICS MECHANICS AND COMPUTER SCIENCE, 2025, 125 (01) :56-65