Elliptic fourth-order operators with Wentzell boundary conditions on Lipschitz domains

被引:0
作者
Ploss, David [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Engler str 2, D-76131 Karlsruhe, Germany
关键词
Boundary value problem; Lipschitz boundary; Wentzell boundary condition; Generalized trace; Analytic semigroup; Eventual positivity; REGULARITY;
D O I
10.1007/s00028-024-01015-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For bounded domains Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with Lipschitz boundary Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, we investigate boundary value problems for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary conditions. Using form methods, we begin by showing general results for an even wider class of operators of type A=B & lowast;B0-NbB gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {A}}=\begin{pmatrix} B<^>*B & 0 \\ -{\mathscr {N}}<^>{\mathfrak {b}}B & \gamma \end{pmatrix}, \end{aligned}$$\end{document}where B is associated to a quadratic form b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {b}}$$\end{document} and Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}<^>{{\mathfrak {b}}}$$\end{document} an abstractly defined co-normal Neumann trace. Even in this general setting, we prove generation of an analytic semigroup on the product space H:=L2(Omega)xL2(Gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}:=L<^>2(\Omega ) \times L<^>2(\Gamma )$$\end{document}. Using recent results concerning weak co-normal traces, we apply our abstract theory to the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for operators in divergence form B=-divQ del\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=-\mathop {{div} }Q \nabla $$\end{document} with Q is an element of C1,1(Omega<overline>,Rdxd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in C<^>{1,1}({\overline{\Omega }},{\mathbb {R}}<^>{d\times d}),$$\end{document} also obtaining H & ouml;lder-regularity of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.
引用
收藏
页数:43
相关论文
共 50 条
[31]   QUASI-LINEAR FRACTIONAL-ORDER OPERATORS IN LIPSCHITZ DOMAINS [J].
Borthagaray, Juan Pablo ;
Li, Wenbo ;
Nochetto, Ricardo H. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) :4006-4039
[32]   Symmetric positive solutions for p-Laplacian fourth-order differential equations with integral boundary conditions [J].
Zhang, Xuemei ;
Feng, Meiqiang ;
Gee, Weigao .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 222 (02) :561-573
[34]   Conditions for maximal regularity of solutions to fourth-order differential equations [J].
Moldagali, Ye. O. ;
Ospanov, K. N. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES, 2024, 116 (04) :149-158
[35]   Fast Algorithm for the Fourth-Order Elliptic Problem Based on Orthogonal Matrix Decomposition [J].
Di Stolfo, Paolo ;
Vajtersic, Marian .
PARALLEL PROCESSING AND APPLIED MATHEMATICS, PPAM 2015, PT I, 2016, 9573 :583-593
[36]   Existence of Holder Continuous Solutions for a Class of Degenerate Fourth-Order Elliptic Equations [J].
Cirmi, G. R. ;
D'Asero, S. ;
Leonardi, S. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (04)
[37]   The regularity and stability of solutions to semilinear fourth-order elliptic problems with negative exponents [J].
Lai, Baishun .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :195-212
[38]   The determinants of fourth order dissipative operators with transmission conditions [J].
Zhang, Xin-yan ;
Sun, Jiong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 410 (01) :55-69
[39]   POSITIVE SOLUTIONS OF NONLINEAR FOURTH-ORDER SINGULAR BOUNDARY VALUE PROBLEMS [J].
LüHaiyan (Dept.of Math. .
Annals of Differential Equations, 2007, (03) :288-296
[40]   A class of singular fourth-order boundary value problems with nonhomogeneous nonlinearity [J].
Yao, Qingliu .
ANNALES POLONICI MATHEMATICI, 2013, 109 (03) :311-325