Elliptic fourth-order operators with Wentzell boundary conditions on Lipschitz domains

被引:0
作者
Ploss, David [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Engler str 2, D-76131 Karlsruhe, Germany
关键词
Boundary value problem; Lipschitz boundary; Wentzell boundary condition; Generalized trace; Analytic semigroup; Eventual positivity; REGULARITY;
D O I
10.1007/s00028-024-01015-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For bounded domains Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with Lipschitz boundary Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, we investigate boundary value problems for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary conditions. Using form methods, we begin by showing general results for an even wider class of operators of type A=B & lowast;B0-NbB gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {A}}=\begin{pmatrix} B<^>*B & 0 \\ -{\mathscr {N}}<^>{\mathfrak {b}}B & \gamma \end{pmatrix}, \end{aligned}$$\end{document}where B is associated to a quadratic form b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {b}}$$\end{document} and Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}<^>{{\mathfrak {b}}}$$\end{document} an abstractly defined co-normal Neumann trace. Even in this general setting, we prove generation of an analytic semigroup on the product space H:=L2(Omega)xL2(Gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}:=L<^>2(\Omega ) \times L<^>2(\Gamma )$$\end{document}. Using recent results concerning weak co-normal traces, we apply our abstract theory to the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for operators in divergence form B=-divQ del\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=-\mathop {{div} }Q \nabla $$\end{document} with Q is an element of C1,1(Omega<overline>,Rdxd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in C<^>{1,1}({\overline{\Omega }},{\mathbb {R}}<^>{d\times d}),$$\end{document} also obtaining H & ouml;lder-regularity of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.
引用
收藏
页数:43
相关论文
共 50 条
[21]   Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem [J].
Heidarkhani, Shapour ;
Khademloo, Somaye ;
Solimaninia, Arezoo .
PORTUGALIAE MATHEMATICA, 2014, 71 (01) :39-61
[22]   Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems [J].
Ferrara, Massimiliano ;
Khademloo, Somaye ;
Heidarkhani, Shapour .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 :316-325
[23]   Bounded solutions of fourth-order nonlinear elliptic equations with convection terms [J].
Cirmi, G. R. ;
D'Asero, S. .
APPLICABLE ANALYSIS, 2021, 100 (12) :2581-2605
[24]   Boundary Value Problems for Fourth-Order Sobolev Type Equations [J].
Kozhanov, Alexander, I .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (04) :425-432
[25]   Existence of solutions for fourth-order boundary value problem with parameter [J].
Yang Yang ;
Ji-hui Zhang .
Applied Mathematics and Mechanics, 2010, 31 :377-384
[26]   Existence of solutions for fourth-order nonlinear boundary value problems [J].
Mingzhu Huang .
Advances in Difference Equations, 2021
[27]   Existence of solutions for fourth-order nonlinear boundary value problems [J].
Huang, Mingzhu .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[28]   Existence of a positive solution of a fourth-order boundary value problem [J].
Yang, Xiaojing ;
Lo, Kueiming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 69 (07) :2267-2273
[29]   Existence of solutions for fourth-order boundary value problem with parameter [J].
杨阳 ;
张吉慧 .
AppliedMathematicsandMechanics(EnglishEdition), 2010, 31 (03) :377-384
[30]   Existence of solutions for fourth-order boundary value problem with parameter [J].
Yang, Yang ;
Zhang, Ji-hui .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2010, 31 (03) :377-384