Elliptic fourth-order operators with Wentzell boundary conditions on Lipschitz domains

被引:0
|
作者
Ploss, David [1 ]
机构
[1] Karlsruhe Inst Technol, Dept Math, Engler str 2, D-76131 Karlsruhe, Germany
关键词
Boundary value problem; Lipschitz boundary; Wentzell boundary condition; Generalized trace; Analytic semigroup; Eventual positivity; REGULARITY;
D O I
10.1007/s00028-024-01015-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For bounded domains Omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} with Lipschitz boundary Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document}, we investigate boundary value problems for elliptic operators with variable coefficients of fourth-order subject to Wentzell (or dynamic) boundary conditions. Using form methods, we begin by showing general results for an even wider class of operators of type A=B & lowast;B0-NbB gamma,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\mathcal {A}}=\begin{pmatrix} B<^>*B & 0 \\ -{\mathscr {N}}<^>{\mathfrak {b}}B & \gamma \end{pmatrix}, \end{aligned}$$\end{document}where B is associated to a quadratic form b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {b}}$$\end{document} and Nb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathscr {N}}<^>{{\mathfrak {b}}}$$\end{document} an abstractly defined co-normal Neumann trace. Even in this general setting, we prove generation of an analytic semigroup on the product space H:=L2(Omega)xL2(Gamma)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}:=L<^>2(\Omega ) \times L<^>2(\Gamma )$$\end{document}. Using recent results concerning weak co-normal traces, we apply our abstract theory to the elliptic fourth-order case and are able to fully characterize the domain in terms of Sobolev regularity for operators in divergence form B=-divQ del\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=-\mathop {{div} }Q \nabla $$\end{document} with Q is an element of C1,1(Omega<overline>,Rdxd),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q \in C<^>{1,1}({\overline{\Omega }},{\mathbb {R}}<^>{d\times d}),$$\end{document} also obtaining H & ouml;lder-regularity of solutions. Finally, we also discuss asymptotic behavior and (eventual) positivity.
引用
收藏
页数:43
相关论文
共 50 条