Operator Solutions of the Multi–valued Operator Equation A=BXC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A = BXC$$\end{document}Operator Solutions of the Multi–valued Operator Equation A=BXC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A = BXC$$\end{document}A. Sandovici

被引:0
作者
Adrian Sandovici [1 ]
机构
[1] “Gheorghe Asachi” Technical University of Iaşi,Department of Mathematics and Informatics
关键词
Linear space; Linear operator; Linear relation; Operator equation; Primary 47A06; Secondary 47A05.;
D O I
10.1007/s40840-025-01836-2
中图分类号
学科分类号
摘要
Assume that A, B and C are three linear relations on certain linear spaces. The main objective of this note is to present some necessary and sufficient conditions for the existence of the solutions X of the operator equation A=BXC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A = BXC$$\end{document}. The obtained characterizations extend and complete some known operator factorization results due to R.G. Douglas, Z. Sebestyén and D. Popovici.
引用
收藏
相关论文
empty
未找到相关数据