Development and validation of machine learning models for predicting extubation failure in patients undergoing cardiac surgery: a retrospective study

被引:1
作者
Jiang, Xiaofeng [1 ]
Peng, Wenyong [1 ]
Xu, Jianbo [1 ]
Zhu, Yanhong [2 ]
机构
[1] Zhejiang Univ, Sch Med, Affiliated Jinhua Hosp, Dept Anesthesiol, Jinhua, Zhejiang, Peoples R China
[2] First Peoples Hosp Pinghu, Dept Anesthesiol, 500 Sangang Rd,Danghu St, Pinghu 314200, Zhejiang, Peoples R China
关键词
Extubation failure; Cardiac surgery; Prediction; Machine learning; PROLONGED MECHANICAL VENTILATION; RISK-FACTORS; REINTUBATION; ETIOLOGY; WEIGHT;
D O I
10.1038/s41598-025-93516-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with multiple comorbidities and those undergoing complex cardiac surgery may experience extubation failure and reintubation. The aim of this study was to establish an extubation prediction model using explainable machine learning and identify the most important predictors of extubation failure in patients undergoing cardiac surgery. Data from 776 adult patients who underwent cardiac surgery and were intubated for more than 24 h were obtained from the Medical Information Mart for Intensive Care (MIMIC)-IV database. The primary endpoint was extubation failure according to the WIND criteria, with 205 patients experiencing extubation failure. The data was split into a training set (80%) and a test set (20%). The performance of the XGBoost algorithm was the highest (AUC 0.793, Mean Precision 0.700, Brier Score0.150), which was better than that of logistic regression (AUC 0.766, Mean Precision 0.553, Brier Score0.173) and random forest (AUC 0.791, Mean Precision 0.510, Brier Score 0.181). The most crucial predictor of extubation failure is the mean value of the anion gap in the 24 h before extubation. The other main features include ventilator parameters and blood gas indicators. By applying machine learning to large datasets, we developed a new method for predicting extubation failure after cardiac surgery in critically ill patients. Based on the predictive factors analyzed, internal environmental indicators and ventilation characteristics were important predictors of extubation failure. Therefore, these predictive factors should be considered when determining extubation readiness.
引用
收藏
页数:8
相关论文
共 34 条
[1]  
Alistair Johnson L. B., 2023, PhysioNet, DOI 10.13026="6mm1-ek67.=" doi.org=
[2]   Predictive factors of weaning from mechanical ventilation and extubation outcome: A systematic review [J].
Baptistella, Antuani Rafael ;
Sarmento, Fabio Junior ;
da Silva, Karina Ribeiro ;
Baptistella, Shaline Ferla ;
Taglietti, Marcelo ;
Zuquello, Radames Adamo ;
Nunes Filho, Joao Rogerio .
JOURNAL OF CRITICAL CARE, 2018, 48 :56-62
[3]   Epidemiology of Weaning Outcome according to a New Definition The WIND Study [J].
Beduneau, Gaetan ;
Pham, Tai ;
Schortgen, Frederique ;
Piquilloud, Lise ;
Zogheib, Elie ;
Jonas, Maud ;
Grelon, Fabien ;
Runge, Isabelle ;
Terzi, Nicolas ;
Grange, Steven ;
Barberet, Guillaume ;
Guitard, Pierre-Gildas ;
Frat, Jean-Pierre ;
Constan, Adrien ;
Chretien, Jean-Marie ;
Mancebo, Jordi ;
Mercat, Alain ;
Richard, Jean-Christophe M. ;
Brochard, Laurent .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195 (06) :772-783
[4]   Variation in extubation failure rates after neonatal congenital heart surgery across Pediatric Cardiac Critical Care Consortium hospitals [J].
Benneyworth, Brian D. ;
Mastropietro, Christopher W. ;
Graham, Eric M. ;
Klugman, Darren ;
Costello, John M. ;
Zhang, Wenying ;
Gaies, Michael .
JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY, 2017, 153 (06) :1519-1526
[5]   Unplanned Reintubation Following Cardiac Surgery: Incidence, Timing, Risk Factors, and Outcomes [J].
Beverly, Anair ;
Brovman, Ethan Y. ;
Malapero, Raymond J. ;
Lekowski, Robert W. ;
Urman, Richard D. .
JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, 2016, 30 (06) :1523-1529
[6]   Outcome of patients undergoing prolonged mechanical ventilation after critical illness [J].
Bigatello, Luca M. ;
Stelfox, Henry Thomas ;
Berra, Lorenzo ;
Schmidt, Ulrich ;
Gettings, Elise M. .
CRITICAL CARE MEDICINE, 2007, 35 (11) :2491-2497
[7]  
Chen HG, 2020, Arxiv, DOI [arXiv:2006.16234, DOI 10.48550/ARXIV.2006.16234, 10.48550/arXiv.2006.16234]
[8]   A Simple Algorithm Using Ventilator Parameters to Predict Successfully Rapid Weaning Program in Cardiac Intensive Care Unit Patients [J].
Chen, Wei-Teing ;
Huang, Hai-Lun ;
Ko, Pi-Shao ;
Su, Wen ;
Kao, Chung-Cheng ;
Su, Sui-Lung .
JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (03)
[9]   A Machine Learning decision-making tool for extubation in Intensive Care Unit patients [J].
Fabregat, Alexandre ;
Magret, Monica ;
Ferre, Josep Anton ;
Vernet, Anton ;
Guasch, Neus ;
Rodriguez, Alejandro ;
Gomez, Josep ;
Bodi, Maria .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 200
[10]   Predictors for extubation failure in COVID-19 patients using a machine learning approach [J].
Fleuren, Lucas M. ;
Dam, Tariq A. ;
Tonutti, Michele ;
de Bruin, Daan P. ;
Lalisang, Robbert C. A. ;
Gommers, Diederik ;
Cremer, Olaf L. ;
Bosman, Rob J. ;
Rigter, Sander ;
Wils, Evert-Jan ;
Frenzel, Tim ;
Dongelmans, Dave A. ;
de Jong, Remko ;
Peters, Marco ;
Kamps, Marlijn J. A. ;
Ramnarain, Dharmanand ;
Nowitzky, Ralph ;
Nooteboom, Fleur G. C. A. ;
de Ruijter, Wouter ;
Urlings-Strop, Louise C. ;
Smit, Ellen G. M. ;
Mehagnoul-Schipper, D. Jannet ;
Dormans, Tom ;
de Jager, Cornelis P. C. ;
Hendriks, Stefaan H. A. ;
Achterberg, Sefanja ;
Oostdijk, Evelien ;
Reidinga, Auke C. ;
Festen-Spanjer, Barbara ;
Brunnekreef, Gert B. ;
Cornet, Alexander D. ;
van den Tempel, Walter ;
Boelens, Age D. ;
Koetsier, Peter ;
Lens, Judith ;
Faber, Harald J. ;
Karakus, A. ;
Entjes, Robert ;
de Jong, Paul ;
Rettig, Thijs C. D. ;
Arbous, Sesmu ;
Vonk, Sebastiaan J. J. ;
Fornasa, Mattia ;
Machado, Tomas ;
Houwert, Taco ;
Hovenkamp, Hidde ;
Londono, Roberto Noorduijn ;
Quintarelli, Davide ;
Scholtemeijer, Martijn G. ;
de Beer, Aletta A. .
CRITICAL CARE, 2021, 25 (01)