Excitatory synaptic integration mechanism of three types of granule cells in the dentate gyrus

被引:0
作者
Mao, Yue [1 ]
Liu, Ming [1 ]
Sun, Xiaojuan [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Math & Informat Networks, Minist Educ, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Dynamics modeling; Dendrite integration; Dentate granule cell; Semilunar granule cell; Hilar ectopic granule cell; DENDRITIC INTEGRATION; PATTERN SEPARATION; THIN DENDRITES; CHANNELS; NEURONS; CA1; EXCITABILITY; ACTIVATION; BRANCHES; MODEL;
D O I
10.1007/s11571-025-10226-0
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Granule cells (GCs) are mainly responsible for receiving and integrating information from the entorhinal cortex and transferring it to the hippocampus to accomplish memory-related functions such as pattern separation. Owing to the heterogeneity of GCs, there are also two other subtypes, namely semilunar granule cells (SGCs) and hilar ectopic granule cells (HEGCs). In order to investigate their differences, here we examine the disparities in dendritic integration among the different subtypes of GCs. By utilizing biological experimental data, we developed detailed multi-compartment models for each type of GC. Our findings reveal that under the excitatory synaptic inputs (mediated by AMPA receptors), the dendritic integration of GCs, SGCs and HEGCs are linear, sublinear, and supralinear respectively. Furthermore, we propose that the sublinear integration observed in SGCs may be attributed to a high density of V-type potassium channels (KV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{V}$$\end{document}) distributed in dendrites with smaller volume and higher input resistance; while the supralinear integration seen in HEGCs may be due to a high density of T-type calcium channels (CaT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{T}$$\end{document}) distributed in dendrites with larger volume and lower input resistance. Additionally, sodium channels, six types of potassium channels (KA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{A}$$\end{document}, KM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{M}$$\end{document}, sKDR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{{\text{DR}}}$$\end{document}, fKDR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{{\text{DR}}}$$\end{document}, BK, SK), and two types of calcium channels (CaN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{N}$$\end{document}, CaL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_\textrm{L}$$\end{document}) have minimal influence on their respective integration modes. We also found different integration modes exhibit varied somatic firing rates when subjected to different spatial synaptic activation sets, the HEGCs with the supralinear integration demonstrate higher somatic firing rates than the SGCs with the sublinear integration. These results provide theoretical insights into understanding the distinct roles played by these three subtypes of granule cells in memory-related functions within the dentate gyrus.
引用
收藏
页数:17
相关论文
共 59 条
[1]   Thin Dendrites of Cerebellar Interneurons Confer Sublinear Synaptic Integration and a Gradient of Short-Term Plasticity [J].
Abrahamsson, Therese ;
Cathala, Laurence ;
Matsui, Ko ;
Shigemoto, Ryuichi ;
DiGregorio, David A. .
NEURON, 2012, 73 (06) :1159-1172
[2]   Differential Activity-Dependent Increase in Synaptic Inhibition and Parvalbumin Interneuron Recruitment in Dentate Granule Cells and Semilunar Granule Cells [J].
Afrasiabi, Milad ;
Gupta, Akshay ;
Xu, Huaying ;
Swietek, Bogumila ;
Santhakumar, Vijayalakshmi .
JOURNAL OF NEUROSCIENCE, 2022, 42 (06) :1090-1103
[3]   Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model [J].
Althaus, A. L. ;
Sagher, O. ;
Parent, J. M. ;
Murphy, G. G. .
JOURNAL OF NEUROPHYSIOLOGY, 2015, 113 (04) :1184-1194
[4]   A Toolbox of Criteria for Distinguishing Cajal-Retzius Cells from Other Neuronal Types in the Postnatal Mouse Hippocampus [J].
Anstotz, Max ;
Maccaferri, Gianmaria .
ENEURO, 2020, 7 (01)
[5]   Role of multiple calcium and calcium-dependent conductances in regulation of hippocampal dentate granule cell excitability [J].
Aradi, I ;
Holmes, WR .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 1999, 6 (03) :215-235
[6]   Integration of synaptic and intrinsic dendritic currents in cat spinal motoneurons [J].
Binder, MD .
BRAIN RESEARCH REVIEWS, 2002, 40 (1-3) :1-8
[7]   Structured Dendritic Inhibition Supports Branch-Selective Integration in CA1 Pyramidal Cells [J].
Bloss, Erik B. ;
Cembrowski, Mark S. ;
Karsh, Bill ;
Colonell, Jennifer ;
Fetter, Richard D. ;
Spruston, Nelson .
NEURON, 2016, 89 (05) :1016-1030
[8]   Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites [J].
Branco, Tiago ;
Haeusser, Michael .
NEURON, 2011, 69 (05) :885-892
[9]   Morphologic Integration of Hilar Ectopic Granule Cells into Dentate Gyrus Circuitry in the Pilocarpine Model of Temporal Lobe Epilepsy [J].
Cameron, Michael C. ;
Zhan, Ren-Zhi ;
Nadler, J. Victor .
JOURNAL OF COMPARATIVE NEUROLOGY, 2011, 519 (11) :2175-2192
[10]   Mechanisms of Supralinear Calcium Integration in Dendrites of Hippocampal CA1 Fast-Spiking Cells [J].
Camire, Olivier ;
Lazarevich, Ivan ;
Gilbert, Tommy ;
Topolnik, Lisa .
FRONTIERS IN SYNAPTIC NEUROSCIENCE, 2018, 10