A graphite thermal Tesla valve driven by hydrodynamic phonon transport

被引:13
作者
Huang, Xin [1 ]
Anufriev, Roman [1 ,2 ]
Jalabert, Laurent [1 ,3 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Guo, Yangyu [6 ]
Ni, Yuxiang [7 ]
Volz, Sebastian [1 ,3 ]
Nomura, Masahiro [1 ,3 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Tokyo, Japan
[2] Univ Lyon, INSA Lyon, CNRS, CETHIL,UMR5008, Villeurbanne, France
[3] Univ Tokyo, LIMMS, CNRS IIS IRL 2820, Tokyo, Japan
[4] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, Tsukuba, Japan
[5] Natl Inst Mat Sci, Res Ctr Mat Nanoarchitecton, Tsukuba, Japan
[6] Harbin Inst Technol, Sch Energy Sci & Engn, Harbin, Peoples R China
[7] Southwest Jiaotong Univ, Sch Phys Sci & Technol, Chengdu, Peoples R China
基金
日本科学技术振兴机构;
关键词
SINGLE-CRYSTAL; CONDUCTIVITY; FLOW; RECTIFICATION; SILICON; PRESSURE; FLUID;
D O I
10.1038/s41586-024-08052-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Tesla valve benefits the rectification of fluid flow in microfluidic systems1-6 and inspires researchers to design modern solid-state electronic and thermal rectifiers referring to fluid-rectification mechanisms in a liquid-state context. In contrast to the rectification of fluids in microfluidic channels, the rectification of thermal phonons in micro-solid channels presents increased complexity owing to the lack of momentum-conserving collisions between phonons and the infrequent occurrence of liquid-like phonon flows. Recently, investigations and revelations of phonon hydrodynamics in graphitic materials7-10 have opened up new avenues for achieving thermal rectification. Here we demonstrate a phonon hydrodynamics approach to realize the rectification of heat conduction in isotopically enriched graphite crystals. We design a micrometre-scale Tesla valve within 90-nm-thick graphite and experimentally observe a discernible 15.2% difference in thermal conductivity between opposite directions at 45 K. This work marks an important step towards using collective phonon behaviour for thermal management in microscale and nanoscale electronic devices, paving the way for thermal rectification in solids. By making use of the hydrodynamic behaviour of phonons in graphitic materials, a thermal version of a micrometre-scale Tesla valve is demonstrated, resulting in a method for thermal rectification in solids.
引用
收藏
页码:1086 / 1090
页数:5
相关论文
共 67 条
[1]   Mechanical modeling and characterization of suspended cooled silicon bolometers for sub-millimeter and millimeter waves polarization detection [J].
Aliane, A. ;
Ouvrier-Buffet, J-L. ;
Dussopt, L. ;
Goudon, V. ;
Rabaud, W. ;
Kaya, H. ;
Torrecillas, R. ;
Agnese, P. ;
Adami, O. ;
Rodriguez, L. ;
Reveret, V. ;
Poglitsch, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2019, 296 :254-264
[2]   Thermal conductivity of graphene and graphite [J].
Alofi, A. ;
Srivastava, G. P. .
PHYSICAL REVIEW B, 2013, 87 (11)
[3]  
[Anonymous], 2024, FREEPATHS FREE PHONO
[4]   Ray phononics: Thermal guides, emitters, filters, and shields powered by ballistic phonon transport [J].
Anufriev, Roman ;
Nomura, Masahiro .
MATERIALS TODAY PHYSICS, 2020, 15
[5]   Temperature-dependent thermal conductivity of single-crystal silicon layers in SOI substrates [J].
Asheghi, M ;
Touzelbaev, MN ;
Goodson, KE ;
Leung, YK ;
Wong, SS .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1998, 120 (01) :30-36
[6]   Observation of second sound in a rapidly varying temperature field in Ge [J].
Beardo, Albert ;
Lopez-Suarez, Miquel ;
Alberto Perez, Luis ;
Sendra, Lluc ;
Isabel Alonso, Maria ;
Melis, Claudio ;
Bafaluy, Javier ;
Camacho, Juan ;
Colombo, Luciano ;
Rurali, Riccardo ;
Xavier Alvarez, Francesc ;
Sebastian Reparaz, Juan .
SCIENCE ADVANCES, 2021, 7 (27)
[7]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[8]   Phonon hydrodynamics in two-dimensional materials [J].
Cepellotti, Andrea ;
Fugallo, Giorgia ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Mauri, Francesco ;
Marzari, Nicola .
NATURE COMMUNICATIONS, 2015, 6
[9]   Solid-state thermal rectifier [J].
Chang, C. W. ;
Okawa, D. ;
Majumdar, A. ;
Zettl, A. .
SCIENCE, 2006, 314 (5802) :1121-1124
[10]   Non-Fourier phonon heat conduction at the microscale and nanoscale [J].
Chen, Gang .
NATURE REVIEWS PHYSICS, 2021, 3 (08) :555-569