Asymptotic normality of kernel functional regression estimator based upon twice censored data

被引:0
作者
Sarra, Leulmi [1 ]
机构
[1] Univ Freres Mentouri Constantine 1, Dept Math, Lab LAMASD, Constantine, Algeria
关键词
Asymptotic normality; Functional data; Kernel estimation; Regression function; Twice censored data; CONVERGENCE; CONSISTENCY; DENSITY;
D O I
10.1007/s42952-024-00293-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we introduce a new kernel functional regression estimator when the random response variable is subject to twice censoring. Then, we establish the asymptotic normality of our estimator and we deduce the asymptotic confidence interval of the regression function. To enhance our theoretical results, the performance and the asymptotic Gaussian behavior of our estimator are highlighted through a simulation study and an application to real data.
引用
收藏
页码:220 / 247
页数:28
相关论文
共 17 条
[1]   Kernel estimation of the conditional density under a censorship model [J].
Aouicha, Lamia ;
Messaci, Fatiha .
STATISTICS & PROBABILITY LETTERS, 2019, 145 :173-180
[2]   A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator [J].
Bitouzé, D ;
Laurent, B ;
Massart, P .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (06) :735-763
[3]   Rates of mean square convergence of density and failure rate estimators under twice censoring [J].
Boukeloua, Mohamed .
STATISTICS & PROBABILITY LETTERS, 2015, 106 :121-128
[4]   COMMON RISK-FACTORS IN THE RETURNS ON STOCKS AND BONDS [J].
FAMA, EF ;
FRENCH, KR .
JOURNAL OF FINANCIAL ECONOMICS, 1993, 33 (01) :3-56
[5]   Nonparametric regression on functional data: Inference and practical aspects [J].
Ferraty, Frederic ;
Mas, Andre ;
Vieu, Philippe .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (03) :267-286
[6]   Rate of uniform consistency for nonparametric estimates with functional variables [J].
Ferraty, Frederic ;
Laksaci, Ali ;
Tadj, Amel ;
Vieu, Philippe .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (02) :335-352
[7]  
Ferraty FVieu P., 2006, SPR S STAT
[8]   STRONG CONVERGENCE OF THE FUNCTIONAL NONPARAMETRIC RELATIVE ERROR REGRESSION ESTIMATOR UNDER RIGHT CENSORING [J].
Fetitah, Omar ;
Almanjahie, Ibrahim M. ;
Attouch, Mohammed Kadi ;
Righi, Ali .
MATHEMATICA SLOVACA, 2020, 70 (06) :1469-1490
[9]   Robust regression analysis for a censored response and functional regressors [J].
Hennani, L. Ait ;
Lemdani, M. ;
Said, E. Ould .
JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (01) :221-243
[10]   NONPARAMETRIC-ESTIMATION FROM INCOMPLETE OBSERVATIONS [J].
KAPLAN, EL ;
MEIER, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1958, 53 (282) :457-481