Modified Patankar Linear Multistep Methods for Production-Destruction Systems

被引:1
作者
Izzo, Giuseppe [1 ,3 ]
Messina, Eleonora [1 ,3 ]
Pezzella, Mario [2 ,3 ]
Vecchio, Antonia [2 ,3 ]
机构
[1] Univ Naples Federico II, Dept Math & Applicat, Via Cintia, I-80126 Naples, Italy
[2] CNR Natl Res Council Italy, Inst Appl Computat Mauro Picone, Via P Castellino 111, I-80131 Naples, Italy
[3] INdAM Res Grp GNCS, Rome, Italy
关键词
Patankar-type schemes; Positivity-preserving; High order; Conservativity; Linear multistep methods; LIFE-CYCLE; HIGH-ORDER; POSITIVITY; MODEL; DISCRETIZATIONS; EQUATIONS; DYNAMICS; SCHEMES;
D O I
10.1007/s10915-025-02804-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Modified Patankar schemes are linearly implicit time integration methods designed to be unconditionally positive and conservative. In the present work we extend the Patankar-type approach to linear multistep methods and prove that the resulting discretizations retain, with no restrictions on the step size, the positivity of the solution and the linear invariant of the continuous-time system. Moreover, we provide results on arbitrarily high order of convergence and we introduce an embedding technique for the Patankar weights denominators to achieve it.
引用
收藏
页数:39
相关论文
共 47 条
[1]   THE DYNAMICS OF PRODUCTION AND DESTRUCTION - ANALYTIC INSIGHT INTO COMPLEX BEHAVIOR [J].
ANDERHEIDEN, U ;
MACKEY, MC .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 16 (01) :75-101
[2]  
Axelsson O., 1994, ITERATIVE SOLUTION M, VFirst, DOI [10.1017/CBO9780511624100, DOI 10.1017/CBO9780511624100]
[3]   Unconditionally Strong Stability Preserving Extensions of the TR-BDF2 Method [J].
Bonaventura, L. ;
Della Rocca, A. .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (02) :859-895
[4]   A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations [J].
Burchard, H ;
Deleersnijder, E ;
Meister, A .
APPLIED NUMERICAL MATHEMATICS, 2003, 47 (01) :1-30
[5]   Application of modified Patankar schemes to stiff biogeochemical models for the water column [J].
Burchard, Hans ;
Deleersnijder, Eric ;
Meister, Andreas .
OCEAN DYNAMICS, 2005, 55 (3-4) :326-337
[6]   Description of a flexible and extendable physical-biogeochemical model system for the water column [J].
Burchard, Hans ;
Bolding, Karsten ;
Kuehn, Wilfried ;
Meister, Andreas ;
Neumann, Thomas ;
Umlauf, Lars .
JOURNAL OF MARINE SYSTEMS, 2006, 61 (3-4) :180-211
[7]   Multi-generational SIR modeling: Determination of parameters, epidemiological forecasting and age-dependent vaccination policies [J].
Campos, Eduardo Lima ;
Cysne, Rubens Penha ;
Madureira, Alexandre L. ;
Mendes, Gelcio L. Q. .
INFECTIOUS DISEASE MODELLING, 2021, 6 :751-765
[8]  
Ceseri M, 2024, Arxiv, DOI arXiv:2411.06997
[9]   GENERAL THEORY OF CONVERGENCE FOR NUMERICAL METHODS [J].
CHARTRES, B ;
STEPLEMA.R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1972, 9 (03) :476-&
[10]   Dynamically consistent numerical methods for general productive-destructive systems [J].
Dimitrov, Dobromir T. ;
Kojouharov, Hristo V. .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (12) :1721-1736