Regulation of acetyl-CoA biosynthesis via an intertwined acetyl-CoA synthetase/acetyltransferase complex

被引:0
作者
Zheng, Liujuan [1 ,2 ,3 ,4 ]
Du, Yifei [5 ]
Steinchen, Wieland [2 ,3 ]
Girbig, Mathias [1 ,4 ]
Abendroth, Frank [2 ,3 ,4 ]
Jalomo-Khayrova, Ekaterina [2 ,3 ,4 ]
Bedrunka, Patricia [2 ,3 ,4 ]
Bekeredjian-Ding, Isabelle [6 ]
Mais, Christopher-Nils [2 ,3 ,4 ]
Hochberg, Georg K. A. [1 ,2 ,3 ,4 ]
Freitag, Johannes [2 ,3 ,4 ]
Bange, Gert [1 ,2 ,3 ,4 ]
机构
[1] Max Planck Inst Terr Microbiol, Marburg, Germany
[2] Univ Marburg, Ctr Synthet Microbiol, SYNMIKRO, Marburg, Germany
[3] Dept Chem, Marburg, Germany
[4] Dept Biol, Marburg, Germany
[5] MRC Lab Mol Biol, Cambridge, England
[6] Univ Marburg, Fac Med, Marburg, Germany
基金
英国惠康基金; 中国博士后科学基金; 英国医学研究理事会;
关键词
COENZYME-A SYNTHETASE; ACETYLTRANSFERASE ENZYME; BACILLUS-SUBTILIS; CRYSTAL-STRUCTURE; ACETATE; DATABASE; PRECURSOR; CARBON; ACKA; ACSA;
D O I
10.1038/s41467-025-57842-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acetyl-CoA synthetase (Acs) generates acetyl-coenzyme A (Ac-CoA) but its excessive activity can deplete ATP and lead to a growth arrest. To prevent this, Acs is regulated through Ac-CoA-dependent feedback inhibition executed by Ac-CoA-dependent acetyltransferases such as AcuA in Bacillus subtilis. AcuA acetylates the catalytic lysine of AcsA turning the synthetase inactive. Here, we report that AcuA and AcsA form a tightly intertwined complex - the C-terminal domain binds to acetyltransferase domain of AcuA, while the C-terminus of AcuA occupies the CoA-binding site in the N-terminal domain of AcsA. Formation of the complex reduces AcsA activity in addition to the well-established acetylation of the catalytic lysine 549 in AcsA which we show can disrupt the complex. Thus, different modes of regulation accomplished through AcuA adjust AcsA activity to the concentrations of the different substrates of the reaction. In summary, our study provides detailed mechanistic insights into the regulatory framework underlying acetyl-CoA biosynthesis from acetate.
引用
收藏
页数:11
相关论文
共 40 条
  • [1] Potential Role of Acetyl-CoA Synthetase (acs) and Malate Dehydrogenase (mae) in the Evolution of the Acetate Switch in Bacteria and Archaea
    Barnhart, Elliott P.
    McClure, Marcella A.
    Johnson, Kiki
    Cleveland, Sean
    Hunt, Kristopher A.
    Fields, Matthew W.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [2] In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate
    Chan, Chi Ho
    Garrity, Jane
    Crosby, Heidi A.
    Escalante-Semerena, Jorge C.
    [J]. MOLECULAR MICROBIOLOGY, 2011, 80 (01) : 168 - 183
  • [3] Changes in the size and composition of intracellular pools of nonesterified coenzyme A and coenzyme A thioesters in aerobic and facultatively anaerobic bacteria
    Chohnan, S
    Furukawa, H
    Fujio, T
    Nishihara, H
    Takamura, Y
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (02) : 553 - 560
  • [4] Acetate Dependence of Tumors
    Comerford, Sarah A.
    Huang, Zhiguang
    Du, Xinlin
    Wang, Yun
    Cai, Ling
    Witkiewicz, Agnes K.
    Walters, Holly
    Tantawy, Mohammed N.
    Fu, Allie
    Manning, H. Charles
    Horton, Jay D.
    Hammer, Robert E.
    McKnight, Steven L.
    Tu, Benjamin P.
    [J]. CELL, 2014, 159 (07) : 1591 - 1602
  • [5] Structural mechanisms of autoinhibition and substrate recognition by the ubiquitin ligase HACE1
    Duering, Jonas
    Wolter, Madita
    Toplak, Julia J.
    Torres, Camilo
    Dybkov, Olexandr
    Fokkens, Thornton J.
    Bohnsack, Katherine E.
    Urlaub, Henning
    Steinchen, Wieland
    Dienemann, Christian
    Lorenz, Sonja
    [J]. NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2024, 31 (02) : 364 - 377
  • [6] Selective and brain-penetrant ACSS2 inhibitors target breast cancer brain metastatic cells
    Esquea, Emily M.
    Ciraku, Lorela
    Young, Riley G.
    Merzy, Jessica
    Talarico, Alexandra N.
    Ahmed, Nusaiba N.
    Karuppiah, Mangalam
    Ramesh, Anna
    Chatoff, Adam
    Crispim, Claudia V.
    Rashad, Adel A.
    Cocklin, Simon
    Snyder, Nathaniel W.
    Beld, Joris
    Simone, Nicole L.
    Reginato, Mauricio J.
    Dick, Alexej
    [J]. FRONTIERS IN PHARMACOLOGY, 2024, 15
  • [7] Biochemical and mutational analyses of AcuA, the acetyltransferase enzyme that controls the activity of the acetyl coenzyme A synthetase (AcsA) in Bacillus subtilis
    Gardner, Jeffrey G.
    Escalante-Semerena, Jorge C.
    [J]. JOURNAL OF BACTERIOLOGY, 2008, 190 (14) : 5132 - 5136
  • [8] Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis
    Gardner, Jeffrey G.
    Grundy, Frank J.
    Henkin, Tina M.
    Escalante-Semerena, Jorge C.
    [J]. JOURNAL OF BACTERIOLOGY, 2006, 188 (15) : 5460 - 5468
  • [9] In Bacillus subtilis, the Sirtuin Protein Deacetylase, Encoded by the srtN Gene (Formerly yhdZ), and Functions Encoded by the acuABC Genes Control the Activity of Acetyl Coenzyme A Synthetase
    Gardner, Jeffrey G.
    Escalante-Semerena, Jorge C.
    [J]. JOURNAL OF BACTERIOLOGY, 2009, 191 (06) : 1749 - 1755
  • [10] The detection, correlation, and comparison of peptide precursor and product ions from data independent LC-MS with data dependant LC-MS/MS
    Geromanos, Scott J.
    Vissers, Johannes P. C.
    Silva, Jeffrey C.
    Dorschel, Craig A.
    Li, Guo-Zhong
    Gorenstein, Marc V.
    Bateman, Robert H.
    Langridge, James I.
    [J]. PROTEOMICS, 2009, 9 (06) : 1683 - 1695