On Modular Invariance of Quantum Affine W-Algebras

被引:0
|
作者
Kac, Victor G. [1 ]
Wakimoto, Minoru [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
DIMENSIONAL LIE-ALGEBRAS; REPRESENTATION-THEORY; REDUCTION;
D O I
10.1007/s00220-024-05223-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find modular transformations of normalized characters for the following W-algebras: (a) W-k(min)(g), where g = D-n (n >= 4),or E-6,E-7,E-8, and k is a negative integer >= -2, or >= -h(boolean OR)/(6)-1, respectively; (b) quantum Hamiltonian reduction of the g-module L(k Lambda(0)), where g is a simple Lie algebra, f is its non-zero nilpotent element, and k is a principal admissible level with the denominator u > theta(x), where 2x is the Dynkin characteristic of f, and theta is the highest root of g. We prove that these vertex algebras are modular invariant. A conformal vertex algebra V is called modular invariant if its character trVq(0)(L)-c/24 converges to a holomorphic modular function in the complex upper half-plane on a congruence subgroup. We find explicit formulas for their characters. Modular invariance of V is important since, in particular, conjecturally it implies that V is simple, and that V is rational, provided that it is lisse.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Quantum affine algebras and deformations of the Virasoro and W-algebras
    Frenkel, E
    Reshetikhin, N
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (01) : 237 - 264
  • [2] On Free Field Realization of Quantum Affine W-Algebras
    Victor G. Kac
    Minoru Wakimoto
    Communications in Mathematical Physics, 2022, 395 : 571 - 600
  • [3] On Free Field Realization of Quantum Affine W-Algebras
    Kac, Victor G.
    Wakimoto, Minoru
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 395 (02) : 571 - 600
  • [4] Localization for affine W-algebras
    Dhillon, Gurbir
    Raskin, Sam
    ADVANCES IN MATHEMATICS, 2023, 413
  • [5] Localization of Affine W-Algebras
    Arakawa, T.
    Kuwabara, T.
    Malikov, F.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 335 (01) : 143 - 182
  • [6] Localization of Affine W-Algebras
    T. Arakawa
    T. Kuwabara
    F. Malikov
    Communications in Mathematical Physics, 2015, 335 : 143 - 182
  • [7] Modular finite W-algebras
    Goodwin, Simon M.
    Topley, Lewis W.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (18) : 5811 - 5853
  • [8] Defining Relations for Minimal Unitary Quantum Affine W-Algebras
    Adamovic, Drazen
    Kac, Victor G.
    Frajria, Pierluigi Moseneder
    Papi, Paolo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (02)
  • [9] Defining Relations for Minimal Unitary Quantum Affine W-Algebras
    Dražen Adamović
    Victor G. Kac
    Pierluigi Möseneder Frajria
    Paolo Papi
    Communications in Mathematical Physics, 2024, 405
  • [10] Deformed W-algebras, quantum affine algebras and integrable models of statistical mechanics
    Bouwknegt, P
    GROUP 22: PROCEEDINGS OF THE XII INTERNATIONAL COLLOQUIUM ON GROUP THEORETICAL METHODS IN PHYSICS, 1998, : 402 - 406