On the second Hankel determinant of certain subclass of bi-univalent functions

被引:0
作者
Atshan, Waggas Galib [1 ]
Rahman, Ibtihal Abdul Ridha [1 ]
Yalcin, Sibel [2 ]
机构
[1] Univ Al Qadisiyah, Coll Sci, Dept Math, Al Diwaniyah, Iraq
[2] Bursa Uludag Univ, Fac Arts & Sci, Dept Math, TR-16059 Bursa, Turkiye
关键词
Subordination; Bi-univalent function; Analytic function; Hankel determinant; Coefficient bounds; COEFFICIENT;
D O I
10.1007/s13370-025-01269-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we define subclass D Sigma(delta,beta,alpha,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathfrak {D}}_{\Sigma }(\delta ,\beta ,\alpha ,t)$$\end{document} of the function class Sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} of bi-univalent functions defined in the open unit disk in the complex plane. Using Chebyshev polynomials, we have investigated the upper bound for the second Hankel determinant for this function class.
引用
收藏
页数:12
相关论文
共 26 条
  • [1] Al-Ameedee SA., 2020, J. Phys. Conf. Ser, V1530, P1
  • [2] Al-Ameedee SA., 2020, J. Phys. Conf. Ser, V1664, P1
  • [3] alar M., 2019, C. R. Acad. Bulgare Sci, V72, P16081615
  • [4] Alhily S.S., 2018, 1 INT SCI C IR AL KH, P29
  • [5] Altinkaya S, 2020, TWMS J APPL ENG MATH, V10, P251
  • [6] On the Chebyshev coefficients for a general subclass of univalent functions
    Altinkaya, Sahsene
    Yalcin, Sibel
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (06) : 2885 - 2890
  • [7] Atshan WG., 2019, J. Phys. Conf. Ser, V1294, P1
  • [8] Atshan WG., 2020, Math. Appl, V9, P83, DOI [10.13164/ma.2020.07, DOI 10.13164/MA.2020.07]
  • [9] Brannan D. A., 1986, Stud. Univ. Babes-Bolyai Math., V31, P70, DOI DOI 10.1016/B978-0-08-031636-9.50012-7
  • [10] Brannan D.A., 1980, P NATO ADV STUD I HE