Interpretable deep learning survival predictions in sporadic Creutzfeldt-Jakob disease

被引:0
作者
Tam, Johnny [1 ]
Centola, John [1 ]
Kurucu, Hatice [1 ]
Watson, Neil [1 ]
Mackenzie, Janet [1 ]
Green, Alison [1 ]
Summers, David [1 ]
Barria, Marcelo [1 ]
Seth, Sohan [2 ]
Smith, Colin [1 ]
Pal, Suvankar [1 ]
机构
[1] Univ Edinburgh, Ctr Clin Brain Sci, UK Natl CJD Res & Surveillance Unit, Chancellors Bldg, Edinburgh EH16 4TG, Scotland
[2] Univ Edinburgh, Inst Adapt & Neural Computat, Sch Informat, Edinburgh EH8 9AB, Scotland
关键词
Creutzfeldt-Jakob disease; Sporadic; Prion; Survival; Neural network; Deep learning; Artificial intelligence; PHENOTYPE; MODELS; ONSET; TIME; AGE; CJD;
D O I
10.1007/s00415-024-12815-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundSporadic Creutzfeldt-Jakob disease (sCJD) is a rapidly progressive and fatal prion disease with significant public health implications. Survival is heterogenous, posing challenges for prognostication and care planning. We developed a survival model using diagnostic data from comprehensive UK sCJD surveillance.MethodsUsing national CJD surveillance data from the United Kingdom (UK), we included 655 cases of probable or definite sCJD according to 2017 international consensus diagnostic criteria between 01/2017 and 01/2022. Data included symptoms at diagnosis, CSF RT-QuIC and 14-3-3, MRI and EEG findings, as well as sex, age, PRNP codon 129 polymorphism, CSF total protein and S100b. An artificial neural network based multitask logistic regression was used for survival analysis. Model-agnostic interpretation methods was used to assess the contribution of individual features on model outcome.ResultsOur algorithm had a c-index of 0.732, IBS of 0.079, and AUC at 5 and 10 months of 0.866 and 0.872, respectively. This modestly improved on Cox proportional hazard model (c-index 0.730, IBS 0.083, AUC 0.852 and 0863) but was not statistically significant. Both models identified codon 129 polymorphism and CSF 14-3-3 to be significant predictive features.ConclusionssCJD survival can be predicted using routinely collected clinical data at diagnosis. Our analysis pipeline has similar levels of performance to classical methods and provide clinically meaningful interpretation which help deepen clinical understanding of the condition. Further development and clinical validation will facilitate improvements in prognostication, care planning, and stratification to clinical trials.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]   Does the presentation of Creutzfeldt-Jakob disease vary by age or presumed etiology? A meta analysis of the past 10 years [J].
Appleby, Brian S. ;
Appleby, Kristin K. ;
Rabins, Peter V. .
JOURNAL OF NEUROPSYCHIATRY AND CLINICAL NEUROSCIENCES, 2007, 19 (04) :428-435
[3]   The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) Statement [J].
Benchimol, Eric I. ;
Smeeth, Liam ;
Guttmann, Astrid ;
Harron, Katie ;
Moher, David ;
Petersen, Irene ;
Sorensen, Henrik T. ;
von Elm, Erik ;
Langan, Sinead M. .
PLOS MEDICINE, 2015, 12 (10)
[4]   Subtype Diagnosis of Sporadic Creutzfeldt-Jakob Disease with Diffusion Magnetic Resonance Imaging [J].
Bizzi, Alberto ;
Pascuzzo, Riccardo ;
Blevins, Janis ;
Moscatelli, Marco E. M. ;
Grisoli, Marina ;
Lodi, Raffaele ;
Doniselli, Fabio M. ;
Castelli, Gianmarco ;
Cohen, Mark L. ;
Stamm, Aymeric ;
Schonberger, Lawrence B. ;
Appleby, Brian S. ;
Gambetti, Pierluigi .
ANNALS OF NEUROLOGY, 2021, 89 (03) :560-572
[5]   Clinical course in young patients with sporadic Creutzfeldt-Jakob disease [J].
Boesenberg, C ;
Schulz-Schaeffer, WJ ;
Meissner, B ;
Kallenberg, K ;
Bartl, M ;
Heinemann, U ;
Krasnianski, A ;
Stoeck, K ;
Varges, D ;
Windl, O ;
Kretzschmar, HA ;
Zerr, I .
ANNALS OF NEUROLOGY, 2005, 58 (04) :533-543
[6]  
Brier G.W., 1950, MONTHLY WEATHER REV, V78, P1, DOI [DOI 10.1175/1520-0493(1950)0780001:VOFEIT2.0.CO
[7]  
2, DOI 10.1175/1520-0493(1950)0782.0.CO
[8]  
2, 10.1175/1520-0493(1950)078%3C0001:VOFEIT%3E2.0.CO
[9]  
2]
[10]   Total Tau Level in Cerebrospinal Fluid as a Predictor of Survival in Creutzfeldt-Jakob Disease: A Retrospective Analysis [J].
Coban, Hamza ;
Nadella, Pranay ;
Tu, Danni ;
Shinohara, Russell ;
Berger, Joseph R. .
NEUROLOGY-CLINICAL PRACTICE, 2023, 13 (03)