Comparative evaluation of methods for the prediction of protein-ligand binding sites

被引:7
作者
Utges, Javier S. [1 ]
Barton, Geoffrey J. [1 ]
机构
[1] Univ Dundee, Sch Life Sci, Div Computat Biol, Dow St, Dundee DD1 5EH, Scotland
基金
英国惠康基金; 英国生物技术与生命科学研究理事会;
关键词
Ligand binding site prediction; Binding pocket; Benchmark; Reference dataset; Machine learning; Drug discovery; STRUCTURAL CLASSIFICATION; CRYSTAL-STRUCTURE; SC-PDB; CATALYTIC MECHANISM; SECONDARY STRUCTURE; SCORING FUNCTIONS; PDBBIND DATABASE; ACTIVE-SITES; MOAD MOTHER; IDENTIFICATION;
D O I
10.1186/s13321-024-00923-z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The accurate identification of protein-ligand binding sites is of critical importance in understanding and modulating protein function. Accordingly, ligand binding site prediction has remained a research focus for over three decades with over 50 methods developed and a change of paradigm from geometry-based to machine learning. In this work, we collate 13 ligand binding site predictors, spanning 30 years, focusing on the latest machine learning-based methods such as VN-EGNN, IF-SitePred, GrASP, PUResNet, and DeepPocket and compare them to the established P2Rank, PRANK and fpocket and earlier methods like PocketFinder, Ligsite and Surfnet. We benchmark the methods against the human subset of our new curated reference dataset, LIGYSIS. LIGYSIS is a comprehensive protein-ligand complex dataset comprising 30,000 proteins with bound ligands which aggregates biologically relevant unique protein-ligand interfaces across biological units of multiple structures from the same protein. LIGYSIS is an improvement for testing methods over earlier datasets like sc-PDB, PDBbind, binding MOAD, COACH420 and HOLO4K which either include 1:1 protein-ligand complexes or consider asymmetric units. Re-scoring of fpocket predictions by PRANK and DeepPocket display the highest recall (60%) whilst IF-SitePred presents the lowest recall (39%). We demonstrate the detrimental effect that redundant prediction of binding sites has on performance as well as the beneficial impact of stronger pocket scoring schemes, with improvements up to 14% in recall (IF-SitePred) and 30% in precision (Surfnet). Finally, we propose top-N+2 recall as the universal benchmark metric for ligand binding site prediction and urge authors to share not only the source code of their methods, but also of their benchmark.Scientific contributionsThis study conducts the largest benchmark of ligand binding site prediction methods to date, comparing 13 original methods and 15 variants using 10 informative metrics. The LIGYSIS dataset is introduced, which aggregates biologically relevant protein-ligand interfaces across multiple structures of the same protein. The study highlights the detrimental effect of redundant binding site prediction and demonstrates significant improvement in recall and precision through stronger scoring schemes. Finally, top-N+2 recall is proposed as a universal benchmark metric for ligand binding site prediction, with a recommendation for open-source sharing of both methods and benchmarks.
引用
收藏
页数:35
相关论文
共 148 条
[121]   Classification of likely functional class for ligand binding sites identified from fragment screening [J].
Utges, Javier S. ;
Macgowan, Stuart A. ;
Ives, Callum M. ;
Barton, Geoffrey J. .
COMMUNICATIONS BIOLOGY, 2024, 7 (01)
[122]  
Utges Javier Sanchez, 2024, Zenodo, DOI 10.5281/ZENODO.10606595
[123]  
Utges JS, 2024, bartongroup/LBS-comparison: publication release, DOI [10.5281/zenodo.14033286, DOI 10.5281/ZENODO.14033286]
[124]   PDBe and PDBe-KB: Providing high-quality, up-to-date and integrated resources of macromolecular structures to support basic and applied research and education [J].
Varadi, Mihaly ;
Anyango, Stephen ;
Appasamy, Sri Devan ;
Armstrong, David ;
Bage, Marcus ;
Berrisford, John ;
Choudhary, Preeti ;
Bertoni, Damian ;
Deshpande, Mandar ;
Leines, Grisell Diaz ;
Ellaway, Joseph ;
Evans, Genevieve ;
Gaborova, Romana ;
Gupta, Deepti ;
Gutmanas, Aleksandras ;
Harrus, Deborah ;
Kleywegt, Gerard J. ;
Bueno, Weslley Morellato ;
Nadzirin, Nurul ;
Nair, Sreenath ;
Pravda, Lukas ;
Afonso, Marcelo Querino Lima ;
Sehnal, David ;
Tanweer, Ahsan ;
Tolchard, James ;
Abrams, Charlotte ;
Dunlop, Roisin ;
Velankar, Sameer .
PROTEIN SCIENCE, 2022, 31 (10)
[125]   PDBe-KB: collaboratively defining the biological context of structural data [J].
Varadi, Mihaly ;
Anyango, Stephen ;
Armstrong, David ;
Berrisford, John ;
Choudhary, Preeti ;
Deshpande, Mandar ;
Nadzirin, Nurul ;
Nair, Sreenath S. ;
Pravda, Lukas ;
Tanweer, Ahsan ;
Al-Lazikani, Bissan ;
Andreini, Claudia ;
Barton, Geoffrey J. ;
Bednar, David ;
Berka, Karel ;
Blundell, Tom ;
Brock, Kelly P. ;
Maria Carazo, Jose ;
Damborsky, Jiri ;
David, Alessia ;
Dey, Sucharita ;
Dunbrack, Roland ;
Fernandez Recio, Juan ;
Fraternali, Franca ;
Gibson, Toby ;
Helmer-Citterich, Manuela ;
Hoksza, David ;
Hopf, Thomas ;
Jakubec, David ;
Kannan, Natarajan ;
Krivak, Radoslav ;
Kumar, Manjeet ;
Levy, Emmanuel D. ;
London, Nir ;
Macias, Jose Ramon ;
Srivatsan, Madhusudhan M. ;
Marks, Debora S. ;
Martens, Lennart ;
McGowan, Stuart A. ;
McGreig, Jake E. ;
Modi, Vivek ;
Gonzalo Parra, R. ;
Pepe, Gerardo ;
Piovesan, Damiano ;
Prilusky, Jaime ;
Putignano, Valeria ;
Radusky, Leandro G. ;
Ramasamy, Pathmanaban ;
Rausch, Atilio O. ;
Reuter, Nathalie .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D534-D542
[126]   AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models [J].
Varadi, Mihaly ;
Anyango, Stephen ;
Deshpande, Mandar ;
Nair, Sreenath ;
Natassia, Cindy ;
Yordanova, Galabina ;
Yuan, David ;
Stroe, Oana ;
Wood, Gemma ;
Laydon, Agata ;
Zidek, Augustin ;
Green, Tim ;
Tunyasuvunakool, Kathryn ;
Petersen, Stig ;
Jumper, John ;
Clancy, Ellen ;
Green, Richard ;
Vora, Ankur ;
Lutfi, Mira ;
Figurnov, Michael ;
Cowie, Andrew ;
Hobbs, Nicole ;
Kohli, Pushmeet ;
Kleywegt, Gerard ;
Birney, Ewan ;
Hassabis, Demis ;
Velankar, Sameer .
NUCLEIC ACIDS RESEARCH, 2022, 50 (D1) :D439-D444
[127]   PDBe-KB: a community-driven resource for structural and functional annotations [J].
Varadi, Mihaly ;
Bcrrisford, John ;
Deshpande, Mandar ;
Nair, Sreenath S. ;
Gutmanas, Aleksandras ;
Armstrong, David ;
Pravda, Lukas ;
Al-Lazikani, Bissan ;
Anyango, Stephen ;
Barton, Geoffrey J. ;
Berka, Karel ;
Blundell, Tom ;
Borkakoti, Neera ;
Dana, Jose ;
Das, Sayoni ;
Dey, Sucharita ;
Di Micco, Patrizio ;
Fraternali, Franca ;
Gibson, Toby ;
Helmer-Citterich, Manuela ;
Hoksza, David ;
Huang, Liang-Chin ;
Jain, Rishabh ;
Jubb, Harry ;
Kannas, Christos ;
Kannan, Natarajan ;
Koca, Jaroslav ;
Krivak, Radoslav ;
Kumar, Manjeet ;
Levy, Emmanuel D. ;
Madeira, F. ;
Madhusudhan, M. S. ;
Martell, Henry J. ;
MacGowan, Stuart ;
McGreig, Jake E. ;
Mir, Saqib ;
Mukhopadhyay, Abhik ;
Parca, Luca ;
Paysan-Lafosse, Typhaine ;
Radusky, Leandro ;
Ribeiro, Antonio ;
Serrano, Luis ;
Sillitoe, Ian ;
Singh, Gulzar ;
Skoda, Petr ;
Svobodova, Radka ;
Tyzack, Jonathan ;
Valencia, Alfonso ;
Fernandez, Eloy Villasclaras ;
Vranken, Wim .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D344-D353
[128]   SIFTS: Structure Integration with Function, Taxonomy and Sequences resource [J].
Velankar, Sameer ;
Dana, Jose M. ;
Jacobsen, Julius ;
van Ginkel, Glen ;
Gane, Paul J. ;
Luo, Jie ;
Oldfield, Thomas J. ;
O'Donovan, Claire ;
Martin, Maria-Jesus ;
Kleywegt, Gerard J. .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D483-D489
[129]   SciPy 1.0: fundamental algorithms for scientific computing in Python']Python [J].
Virtanen, Pauli ;
Gommers, Ralf ;
Oliphant, Travis E. ;
Haberland, Matt ;
Reddy, Tyler ;
Cournapeau, David ;
Burovski, Evgeni ;
Peterson, Pearu ;
Weckesser, Warren ;
Bright, Jonathan ;
van der Walt, Stefan J. ;
Brett, Matthew ;
Wilson, Joshua ;
Millman, K. Jarrod ;
Mayorov, Nikolay ;
Nelson, Andrew R. J. ;
Jones, Eric ;
Kern, Robert ;
Larson, Eric ;
Carey, C. J. ;
Polat, Ilhan ;
Feng, Yu ;
Moore, Eric W. ;
VanderPlas, Jake ;
Laxalde, Denis ;
Perktold, Josef ;
Cimrman, Robert ;
Henriksen, Ian ;
Quintero, E. A. ;
Harris, Charles R. ;
Archibald, Anne M. ;
Ribeiro, Antonio H. ;
Pedregosa, Fabian ;
van Mulbregt, Paul .
NATURE METHODS, 2020, 17 (03) :261-272
[130]   Analyzing the Topology of Active Sites: On the Prediction of Pockets and Subpockets [J].
Volkamer, Andrea ;
Griewel, Axel ;
Grombacher, Thomas ;
Rarey, Matthias .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2010, 50 (11) :2041-2052