Machine learning reveals glycolytic key gene in gastric cancer prognosis

被引:0
作者
Li, Nan [1 ]
Zhang, Yuzhe [2 ]
Zhang, Qianyue [1 ]
Jin, Hao [1 ]
Han, Mengfei [1 ]
Guo, Junhan [3 ]
Zhang, Ye [2 ]
机构
[1] China Acad Elect & Informat Technol, Natl Engn Res Ctr Publ Safety Risk Percept & Contr, Beijing, Peoples R China
[2] China Med Univ, Hosp 1, Lab Canc Inst 1, Shenyang, Peoples R China
[3] Zhengzhou Univ, Affiliated Hosp 1, Ctr Reprod Med, Henan Key Lab Reprod & Genet, Zhengzhou, Peoples R China
关键词
Machine learning; Gene identification; Prognostic; Gastric cancer; PFKFB3; PFKFB3-DRIVEN GLYCOLYSIS;
D O I
10.1038/s41598-025-93512-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Glycolysis is recognized as a central metabolic pathway in the neoplastic evolution of gastric cancer, exerting profound effects on the tumor microenvironment and the neoplastic growth trajectory. However, the identification of key glycolytic genes that significantly affect gastric cancer prognosis remains underexplored. In this work, five machine-learning algorithms were used to elucidate the intimate association between the glycolysis-associated gene phosphofructokinase fructose-bisphosphate 3 (PFKFB3) and the prognosis of gastric cancer patients. Validation across multiple independent datasets confirmed the prognostic significance of PFKFB3. Further, we delved into the functional implications of PFKFB3 in modulating immune responses and biological processes within gastric cancer patients, as well as its broader relevance across multiple cancer types. Results underscore the potential of PFKFB3 as a prognostic biomarker and therapeutic target in gastric cancer. Our project can be found at https://github.com/PiPiNam/ML-GCP.
引用
收藏
页数:12
相关论文
共 64 条
[1]   Combined influence of physical activity and C-reactive protein to albumin ratio on mortality among older cancer survivors in the United States: a prospective cohort study [J].
An, Xiaoqin ;
Li, Jingyi ;
Li, Yuan ;
Liu, Huanxian ;
Bai, Junjun ;
Guo, Qinxiang ;
Jiao, Baoping .
EUROPEAN REVIEW OF AGING AND PHYSICAL ACTIVITY, 2024, 21 (01)
[2]   Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1 [J].
Barbie, David A. ;
Tamayo, Pablo ;
Boehm, Jesse S. ;
Kim, So Young ;
Moody, Susan E. ;
Dunn, Ian F. ;
Schinzel, Anna C. ;
Sandy, Peter ;
Meylan, Etienne ;
Scholl, Claudia ;
Froehling, Stefan ;
Chan, Edmond M. ;
Sos, Martin L. ;
Michel, Kathrin ;
Mermel, Craig ;
Silver, Serena J. ;
Weir, Barbara A. ;
Reiling, Jan H. ;
Sheng, Qing ;
Gupta, Piyush B. ;
Wadlow, Raymond C. ;
Le, Hanh ;
Hoersch, Sebastian ;
Wittner, Ben S. ;
Ramaswamy, Sridhar ;
Livingston, David M. ;
Sabatini, David M. ;
Meyerson, Matthew ;
Thomas, Roman K. ;
Lander, Eric S. ;
Mesirov, Jill P. ;
Root, David E. ;
Gilliland, D. Gary ;
Jacks, Tyler ;
Hahn, William C. .
NATURE, 2009, 462 (7269) :108-U122
[3]   Gastric cancer [J].
Catalano, V ;
Labianca, R ;
Beretta, GD ;
Gatta, G ;
de Braud, F ;
Van Cutsem, E .
CRITICAL REVIEWS IN ONCOLOGY HEMATOLOGY, 2005, 54 (03) :209-241
[4]   Molecular classification of gastric cancer [J].
Chia, N. -Y. ;
Tan, P. .
ANNALS OF ONCOLOGY, 2016, 27 (05) :763-769
[5]   Role of PFKFB3-Driven Glycolysis in Vessel Sprouting [J].
De Bock, Katrien ;
Georgiadou, Maria ;
Schoors, Sandra ;
Kuchnio, Anna ;
Wong, Brian W. ;
Cantelmo, Anna Rita ;
Quaegebeur, Annelies ;
Ghesquiere, Bart ;
Cauwenberghs, Sandra ;
Eelen, Guy ;
Phng, Li-Kun ;
Betz, Inge ;
Tembuyser, Bieke ;
Brepoels, Katleen ;
Welti, Jonathan ;
Geudens, Ilse ;
Segura, Inmaculada ;
Cruys, Bert ;
Bifari, Franscesco ;
Decimo, Ilaria ;
Blanco, Raquel ;
Wyns, Sabine ;
Vangindertael, Jeroen ;
Rocha, Susana ;
Collins, Russel T. ;
Munck, Sebastian ;
Daelemans, Dirk ;
Imamura, Hiromi ;
Devlieger, Roland ;
Rider, Mark ;
Van Veldhoven, Paul P. ;
Schuit, Frans ;
Bartrons, Ramon ;
Hofkens, Johan ;
Fraisl, Peter ;
Telang, Sucheta ;
DeBerardinis, Ralph J. ;
Schoonjans, Luc ;
Vinckier, Stefan ;
Chesney, Jason ;
Gerhardt, Holger ;
Dewerchin, Mieke ;
Carmeliet, Peter .
CELL, 2013, 154 (03) :651-663
[6]   We need to talk about the Warburg effect [J].
DeBerardinis, Ralph J. ;
Chandel, Navdeep S. .
NATURE METABOLISM, 2020, 2 (02) :127-129
[7]   Using extreme gradient boosting to identify origin of replication in Saccharomyces cerevisiae via hybrid features [J].
Duyen Thi Do ;
Nguyen Quoc Khanh Le .
GENOMICS, 2020, 112 (03) :2445-2451
[8]   A guide to machine learning for biologists [J].
Greener, Joe G. ;
Kandathil, Shaun M. ;
Moffat, Lewis ;
Jones, David T. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (01) :40-55
[9]   Interleukin-6 stimulates aerobic glycolysis by regulating PFKFB3 at early stage of colorectal cancer [J].
Han, Jun ;
Meng, Qingyang ;
Xi, Qiulei ;
Zhang, Yongxian ;
Zhuang, Qiulin ;
Han, Yusong ;
Jiang, Yi ;
Ding, Qiurong ;
Wu, Guohao .
INTERNATIONAL JOURNAL OF ONCOLOGY, 2016, 48 (01) :215-224
[10]   eDoctor: machine learning and the future of medicine [J].
Handelman, G. S. ;
Kok, H. K. ;
Chandra, R. V. ;
Razavi, A. H. ;
Lee, M. J. ;
Asadi, H. .
JOURNAL OF INTERNAL MEDICINE, 2018, 284 (06) :603-619