Mechanistic elucidation of human pancreatic acinar development using single-cell transcriptome analysis on a human iPSC differentiation model

被引:1
作者
Mima, Atsushi [1 ,2 ]
Kimura, Azuma [1 ,3 ]
Ito, Ryo [1 ]
Hatano, Yu [1 ]
Tsujimoto, Hiraku [1 ,3 ]
Mae, Shin-Ichi [1 ]
Yamane, Junko [1 ]
Fujibuchi, Wataru [1 ]
Uza, Norimitsu [2 ]
Toyoda, Taro [1 ]
Seno, Hiroshi [2 ]
Osafune, Kenji [1 ]
机构
[1] Kyoto Univ, Ctr iPS Cell Res & Applicat CiRA, 53 Kawahara Cho,Shogoin,Sakyo Ku, Kyoto 6068507, Japan
[2] Kyoto Univ, Dept Gastroenterol & Hepatol, 54 Kawahara Cho,Sakyo Ku, Kyoto 6068507, Japan
[3] Kyoto Univ, Rege Nephro Co Ltd, Medpharm Collaborat Bldg,46-29 Yoshidashimoadachi, Kyoto 6068501, Japan
关键词
iPSC; Pancreas; Acinar cell; Single-cell transcriptome; REG4; Forskolin; PLURIPOTENT STEM-CELLS; GENE-EXPRESSION; HUMAN ISLET; IN-VITRO; MOUSE; GENERATION; PROGENITOR; MATURATION; EPITHELIUM; IDENTITY;
D O I
10.1038/s41598-025-88690-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Few effective treatments have been developed for intractable pancreatic exocrine disorders due to the lack of suitable disease models using human cells. Pancreatic acinar cells differentiated from human induced pluripotent stem cells (hiPSCs) have the potential to solve this issue. In this study, we aimed to elucidate the developmental mechanisms of pancreatic exocrine acinar lineages to establish a directed differentiation method for pancreatic acinar cells from hiPSCs. hiPSC-derived pancreatic endoderm cells were spontaneously differentiated into both pancreatic exocrine and endocrine tissues by implantation into the renal subcapsular space of NOD/SCID mice. Single-cell RNA-seq analysis of the retrieved grafts confirmed the differentiation of pancreatic acinar lineage cells and identified REG4 as a candidate marker for pancreatic acinar progenitor cells. Furthermore, differential gene expression analysis revealed upregulated pathways, including cAMP-related signals, involved in the differentiation of hiPSC-derived pancreatic acinar lineage cells in vivo, and we found that a cAMP activator, forskolin, facilitates the differentiation from hiPSC-derived pancreatic endoderm into pancreatic acinar progenitor cells in our in vitro differentiation culture. Therefore, this platform contributes to our understanding of the developmental mechanisms of pancreatic acinar lineage cells and the establishment of differentiation methods for acinar cells from hiPSCs.
引用
收藏
页数:16
相关论文
共 74 条
[21]   Catabolites of cholesterol synthesis pathways and forskolin as activators of the farnesoid X-activated nuclear receptor [J].
Howard, WR ;
Pospisil, JA ;
Njolito, E ;
Noonan, DJ .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 2000, 163 (02) :195-202
[22]   Commitment and oncogene-induced plasticity of human stem cell-derived pancreatic acinar and ductal organoids [J].
Huang, Ling ;
Desai, Ridhdhi ;
Conrad, Daniel N. ;
Leite, Nayara C. ;
Akshinthala, Dipikaa ;
Lim, Christine Maria ;
Gonzalez, Raul ;
Muthuswamy, Lakshmi B. ;
Gartner, Zev ;
Muthuswamy, Senthil K. .
CELL STEM CELL, 2021, 28 (06) :1090-+
[23]   Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids [J].
Huang, Ling ;
Holtzinger, Audrey ;
Jagan, Ishaan ;
BeGora, Michael ;
Lohse, Ines ;
Ngai, Nicholas ;
Nostro, Cristina ;
Wang, Rennian ;
Muthuswamy, Lakshmi B. ;
Crawford, Howard C. ;
Arrowsmith, Cheryl ;
Kalloger, Steve E. ;
Renouf, Daniel J. ;
Connor, Ashton A. ;
Cleary, Sean ;
Schaeffer, David F. ;
Roehrl, Michael ;
Tsao, Ming-Sound ;
Gallinger, Steven ;
Keller, Gordon ;
Muthuswamy, Senthil K. .
NATURE MEDICINE, 2015, 21 (11) :1364-1371
[24]   Microscopic Anatomy of the Human Islet of Langerhans [J].
In't Veld, Peter ;
Marichal, Miriam .
ISLETS OF LANGERHANS, 2010, 654 :1-19
[25]   Delivery of pancreatic digestive enzymes into the gastrointestinal tract by pancreatic exocrine tissue transplant [J].
Ito, Kyoji ;
Matsuura, Katsuhisa ;
Mihara, Yuichiro ;
Sakamoto, Yoshihiro ;
Hasegawa, Kiyoshi ;
Kokudo, Norihiro ;
Shimizu, Tatsuya .
SCIENTIFIC REPORTS, 2019, 9 (1)
[26]   Gene regulatory factors in pancreatic development [J].
Jensen, J .
DEVELOPMENTAL DYNAMICS, 2004, 229 (01) :176-200
[27]   The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors [J].
Kawaguchi, Y ;
Cooper, B ;
Gannon, M ;
Ray, M ;
MacDonald, RJ ;
Wright, CVE .
NATURE GENETICS, 2002, 32 (01) :128-134
[28]   Single-Cell Transcriptome Profiling of Mouse and hESC-Derived Pancreatic Progenitors [J].
Krentz, Nicole A. J. ;
Lee, Michelle Y. Y. ;
Xu, Eric E. ;
Sproul, Shannon L. J. ;
Maslova, Alexandra ;
Sasaki, Shugo ;
Lynn, Francis C. .
STEM CELL REPORTS, 2018, 11 (06) :1551-1564
[29]   Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo [J].
Kroon, Evert ;
Martinson, Laura A. ;
Kadoya, Kuniko ;
Bang, Anne G. ;
Kelly, Olivia G. ;
Eliazer, Susan ;
Young, Holly ;
Richardson, Mike ;
Smart, Nora G. ;
Cunningham, Justine ;
Agulnick, Alan D. ;
D'Amour, Kevin A. ;
Carpenter, Melissa K. ;
Baetge, Emmanuel E. .
NATURE BIOTECHNOLOGY, 2008, 26 (04) :443-452
[30]   RNA velocity of single cells [J].
La Manno, Gioele ;
Soldatov, Ruslan ;
Zeisel, Amit ;
Braun, Emelie ;
Hochgerner, Hannah ;
Petukhov, Viktor ;
Lidschreiber, Katja ;
Kastriti, Maria E. ;
Lonnerberg, Peter ;
Furlan, Alessandro ;
Fan, Jean ;
Borm, Lars E. ;
Liu, Zehua ;
van Bruggen, David ;
Guo, Jimin ;
He, Xiaoling ;
Barker, Roger ;
Sundstrom, Erik ;
Castelo-Branco, Goncalo ;
Cramer, Patrick ;
Adameyko, Igor ;
Linnarsson, Sten ;
Kharchenko, Peter V. .
NATURE, 2018, 560 (7719) :494-+