MFP-YOLO: a multi-scale feature perception network for CT bone metastasis detection

被引:0
作者
Lu, Wenrui [1 ]
Zhang, Wei [1 ]
Liu, Yanyan [2 ]
Xu, Lingyun [3 ]
Fan, Yimeng [1 ]
Meng, Zhaowei [3 ]
Jia, Qiang [3 ]
机构
[1] Tianjin Univ, Sch Microelect, Tianjin 300072, Peoples R China
[2] Nankai Univ, Coll Elect Informat & Opt Engn, Tianjin 300072, Peoples R China
[3] Tianjin Med Univ, Gen Hosp, Dept Nucl Med, Tianjin 300052, Peoples R China
关键词
Deep learning; Bone metastasis detection; YOLOv5; Multi-scale; Transformer; TEMPORAL SUBTRACTION; IMAGES;
D O I
10.1007/s11517-024-03221-w
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bone metastasis is one of the most common forms of metastasis in the late stages of malignancy. The early detection of bone metastases can help clinicians develop appropriate treatment plans. CT images are essential for diagnosing and assessing bone metastases in clinical practice. However, early bone metastasis lesions occupy a small part of the image and display variable sizes as the condition progresses, which adds complexity to the detection. To improve diagnostic efficiency, this paper proposes a novel algorithm-MFP-YOLO. Building on the YOLOv5 algorithm, this approach introduces a feature extraction module capable of capturing global information and designs a new content-aware feature pyramid structure to improve the network's capability in processing lesions of varying sizes. Moreover, this paper innovatively applies a transformer-structure decoder to bone metastasis detection. A dataset comprising 3921 CT images was created specifically for this task. The proposed method outperforms the baseline model with a 5.5% increase in precision and a 7.7% boost in recall. The experimental results indicate that this method can meet the needs of bone metastasis detection tasks in real scenarios and provide assistance for medical diagnosis.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 31 条
[1]  
Afnouch M, 2023, 2023 INT C INN INT S, P1
[2]   Run, Don't Walk: Chasing Higher FLOPS for Faster Neural Networks [J].
Chen, Jierun ;
Kao, Shiu-Hong ;
He, Hao ;
Zhuo, Weipeng ;
Wen, Song ;
Lee, Chul-Ho ;
Chan, S. -H. Gary .
2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, :12021-12031
[3]   Lesion-Based Bone Metastasis Detection in Chest Bone Scintigraphy Images of Prostate Cancer Patients Using Pre-Train, Negative Mining, and Deep Learning [J].
Cheng, Da-Chuan ;
Hsieh, Te-Chun ;
Yen, Kuo-Yang ;
Kao, Chia-Hung .
DIAGNOSTICS, 2021, 11 (03)
[4]   Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data [J].
Chmelik, Jiri ;
Jakubicek, Roman ;
Walek, Petr ;
Jan, Jiri ;
Ourednicek, Petr ;
Lambert, Lukas ;
Amadori, Elena ;
Gavelli, Giampaolo .
MEDICAL IMAGE ANALYSIS, 2018, 49 :76-88
[5]   Current Applications and Future Impact of Machine Learning in Radiology [J].
Choy, Garry ;
Khalilzadeh, Omid ;
Michalski, Mark ;
Do, Synho ;
Samir, Anthony E. ;
Pianykh, Oleg S. ;
Geis, J. Raymond ;
Pandharipande, Pari V. ;
Brink, James A. ;
Dreyer, Keith J. .
RADIOLOGY, 2018, 288 (02) :318-328
[6]  
da Silva Gustavo Telles, 2019, Asian Pac J Cancer Prev, V20, P45
[7]   Dynamic Head: Unifying Object Detection Heads with Attentions [J].
Dai, Xiyang ;
Chen, Yinpeng ;
Xiao, Bin ;
Chen, Dongdong ;
Liu, Mengchen ;
Yuan, Lu ;
Zhang, Lei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :7369-7378
[8]  
Ge Z, 2021, Arxiv, DOI [arXiv:2107.08430, 10.48550/arXiv.2107.08430]
[9]   The Diagnostic Imaging of Bone Metastases [J].
Heindel, Walter ;
Guebitz, Raphael ;
Vieth, Volker ;
Weckesser, Matthias ;
Schober, Otmar ;
Schaefers, Michael .
DEUTSCHES ARZTEBLATT INTERNATIONAL, 2014, 111 (44) :741-747
[10]  
Hu J., 2018, PROC IEEE C COMPUT V