Numerical solutions of one-dimensional Gelfand equation with fractional Laplacian

被引:0
作者
Liu, Lei [1 ]
Xu, Yufeng [1 ]
机构
[1] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Hunan Province, Peoples R China
关键词
Fractional Laplacian; Gelfand equation; Multiple solutions; Bifurcation; Newton iteration; GALERKIN METHODS; DIFFUSION;
D O I
10.1007/s10910-024-01689-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, we discuss an efficient numerical method to obtain all solutions of fractional Gelfand equation with Dirichlet boundary condition. More precisely, we derive a good initial value motivated by the bifurcation curve of fractional Gelfand equation. It is obvious to see that the number of solutions depends on the value of parameter in fractional Gelfand equation. By collocation technique and finite difference method, numerical solutions can be found very quickly based on Newton iteration method with the aid of such initial guess. Numerical simulation for one-dimensional fractional Gelfand equation are provided, which demonstrates the accuracy and easy-to-implement of our algorithm.
引用
收藏
页码:651 / 665
页数:15
相关论文
共 30 条
[1]   REGULARITY THEORY AND HIGH ORDER NUMERICAL METHODS FOR THE (1D)-FRACTIONAL LAPLACIAN [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan ;
Bruno, Oscar ;
Maas, Martin .
MATHEMATICS OF COMPUTATION, 2018, 87 (312) :1821-1857
[2]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[3]  
Allgower E L., 2012, Numerical Continuation Methods: an Introduction, V13, DOI DOI 10.1007/978-3-642-61257-2
[4]   Application of numerical continuation to compute all solutions of semilinear elliptic equations [J].
Allgower, Eugene ;
Cruceanu, Stefan-Gicu ;
Tavener, Simon .
ADVANCES IN GEOMETRY, 2009, 9 (03) :371-400
[5]   FULLY ADAPTIVE NEWTON-GALERKIN METHODS FOR SEMILINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS [J].
Amrein, Mario ;
Wihler, Thomas P. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (04) :A1637-A1657
[6]  
Applebaum D, 2009, CAM ST AD M, V93, P1
[7]  
Bebernes J., 1989, MATH PROBLEMS COMBUS
[8]   One-point pseudospectral collocation for the one-dimensional Bratu equation [J].
Boyd, John P. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (12) :5553-5565
[9]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[10]   The Influence of Fractional Diffusion in Fisher-KPP Equations [J].
Cabre, Xavier ;
Roquejoffre, Jean-Michel .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2013, 320 (03) :679-722