Numerical solution for third order singularly perturbed turning point problems with integral boundary condition

被引:1
作者
Raja, V. [1 ]
Geetha, N. [2 ]
Mahendran, R. [1 ]
Senthilkumar, L. S. [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Math, Kattankulathur 603203, Tamilnadu, India
[2] Bishop Heber Coll, Dept Math, Tiruchirappalli 620017, Tamilnadu, India
关键词
Turning point problem; Integral boundary condition; Difference scheme; Shishkin mesh; DIFFERENTIAL-EQUATION; SCHEME;
D O I
10.1007/s12190-024-02266-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a third-order singularly perturbed differential equation with integral boundary condition (IBC) is considered. The problem is reduced into system of differential equation, one compromises initial value problem and another one is second order singularly perturbed differential equation with integral boundary condition. Due to the presence of turning point at r=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=0,$$\end{document} the problem exhibit boundary layer at r=-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=-1$$\end{document} and r=1.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r=1.$$\end{document} To tackle this type of problem, a thorough study is required to obtain a priori estimations on the solution and its derivatives of the considered problem. We present a numerical technique adopting an upwind finite difference scheme on a dense piece-wise uniform mesh at the boundary layers. The proposed method is almost first-order convergent. Some numerical examples are provided to validate the theoretical findings.
引用
收藏
页码:829 / 849
页数:21
相关论文
共 44 条
  • [1] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [2] Ascher U. M., 1995, NUMERICAL SOLUTION B, DOI DOI 10.1137/1.9781611971231
  • [3] Bender C. M., 1978, Advanced Mathematical Methods for Scientists and Engineers
  • [4] Third order problems with nonlocal conditions of integral type
    Boucherif, Abdelkader
    Bouguima, Sidi Mohamed
    Benbouziane, Zehour
    Al-Malki, Nawal
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [5] Third order differential equations with integral boundary conditions
    Boucherif, Abdelkader
    Bouguima, Sidi Mohamed
    Al-Malki, Nawal
    Benbouziane, Zehour
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1736 - E1743
  • [6] Numerical solution of a singularly perturbed three-point boundary value problem
    Cakir, M.
    Amiraliyev, G. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (10) : 1465 - 1481
  • [7] A finite difference method for the singularly perturbed problem with nonlocal boundary condition
    Cakir, M
    Amiraliyev, GM
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2005, 160 (02) : 539 - 549
  • [8] A second-order adaptive grid method for a nonlinear singularly perturbed problem with an integral boundary condition
    Cen, Zhongdi
    Liu, Li-Bin
    Xu, Aimin
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 385
  • [9] Accelerated Exponentially Fitted Operator Method for Singularly Perturbed Problems with Integral Boundary Condition
    Debela, Habtamu Garoma
    Duressa, Gemechis File
    [J]. INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 2020
  • [10] FITTED OPERATOR FINITE DIFFERENCE METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL EQUATIONS WITH INTEGRAL BOUNDARY CONDITION
    Debela, Habtamu Garoma
    Duressa, Gemechis File
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (04): : 637 - 651