Nonparametric estimation of P(X<Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {P}}(X<Y)$$\end{document} from noisy data samples with non-standard error distributions

被引:0
作者
Cao Xuan Phuong [1 ]
Le Thi Hong Thuy [2 ]
机构
[1] Ton Duc Thang University,Faculty of Mathematics and Statistics
[2] Van Lang University,Faculty of Fundamental Sciences
关键词
Deconvolution; Non-standard error; Consistency; Convergence rate; 62G05; 62G20;
D O I
10.1007/s00184-023-00941-1
中图分类号
学科分类号
摘要
Let X, Y be continuous random variables with unknown distributions. The aim of this paper is to study the problem of estimating the probability θ:=P(X<Y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta := {\mathbb {P}}(X<Y)$$\end{document} based on independent random samples from the distributions of X′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X'$$\end{document}, Y′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y'$$\end{document}, ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, where X′=X+ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X' = X + \zeta $$\end{document}, Y′=Y+η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y' = Y + \eta $$\end{document} and X, Y, ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} are mutually independent random variables. In this context, ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} are referred to as measurement errors. We apply the ridge-parameter regularization method to derive a nonparametric estimator for θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} depending on two parameters. Our estimator is shown to be consistent with respect to mean squared error if the characteristic functions of ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document}, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} only vanish on Lebesgue measure zero sets. Under some further assumptions on the densities of X, Y, ζ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\zeta $$\end{document} and η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document}, we obtain some upper and lower bounds on the convergence rate of the estimator. A numerical example is also given to illustrate the efficiency of our method.
引用
收藏
页码:973 / 1006
页数:33
相关论文
共 18 条
[1]  
Bamber D(1975)The area above the ordinal dominance graph and the area below the receiver operating characteristic graph J Math Psychol 12 387-415
[2]  
Coffin M(1997)Receiver operating characteristic studies and measurement errors Biometrics 53 823-837
[3]  
Sukhatme S(1994)Simulation-extrapolation estimation in parametric measurement error models J Am Stat Assoc 89 1314-1328
[4]  
Cook JR(2013)Deconvolution of Statist Probab Lett 83 1880-1887
[5]  
Stefanski LA(1951) with supersmooth error distributions Biometrika 38 481-482
[6]  
Dattner I(2007)Note on the inversion theorem Ann Stat 35 1535-1558
[7]  
Gil-Pelaez J(2000)A ridge-parameter approach to deconvolution Commun Stat-Theory Methods 29 2473-2491
[8]  
Hall P(2020)SIMEX approaches to measurement error in ROC studies Acta Appl Math 170 483-514
[9]  
Meister A(2019)Deconvolution of cumulative distribution function with unknown noise distribution Vietnam J Math 47 327-353
[10]  
Kim J(2017)Deconvolution of a cumulative distribution function with some non-standard noise densities Stat Probab Lett 123 171-176