On Ruijs']jsenaars-Schneider spectrum from superconformal indices and ramified instantons

被引:1
作者
Kim, Hee-Cheol [1 ,2 ]
Nedelin, Anton [3 ]
Razamat, Shlomo S. [4 ]
机构
[1] POSTECH, Dept Phys, Pohang 37673, South Korea
[2] Harvard Univ, Jefferson Phys Lab, Cambridge, MA 02138 USA
[3] Kings Coll London, Dept Math, London WC2R 2LS, England
[4] Technion, Dept Phys, IL-32000 Haifa, Israel
基金
以色列科学基金会; 新加坡国家研究基金会; 瑞士国家科学基金会;
关键词
Integrable Hierarchies; Supersymmetric Gauge Theory; INTEGRABLE SYSTEMS; N=1;
D O I
10.1007/JHEP02(2025)010
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss two physics-inspired approaches to derivation of the eigenfunctions and eigenvalues of AN Ruijsenaars-Schneider model. First approach which was recently proposed by the authors relies on the computations of superconformal indices of class S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{S} $$\end{document} 4dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 theories with the insertion of surface defects. Second approach uses computations of Nekrasov-Shatashvili limit of 5dN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 1* instanton partition functions in the presence of co-dimension two defect. We compare results of these two approaches for the low-lying levels of Ruijsenaars-Schneider model. We also discuss different previously proposed exact quantization conditions for the Coulomb branch parameters of the instanton partition functions and their interpretations in terms of index calculations.
引用
收藏
页数:30
相关论文
共 57 条
[1]   Affine SL(2) Conformal Blocks from 4d Gauge Theories [J].
Alday, Luis F. ;
Tachikawa, Yuji .
LETTERS IN MATHEMATICAL PHYSICS, 2010, 94 (01) :87-114
[2]  
Bershadsky M., hep-th/9703167 INSPIRE
[3]   The Ruijs']jsenaars-Schneider model [J].
Braden, HW ;
Sasaki, R .
PROGRESS OF THEORETICAL PHYSICS, 1997, 97 (06) :1003-1017
[4]   Affine Toda solitons and systems of Calogero-Moser type [J].
Braden, HW ;
Hone, ANW .
PHYSICS LETTERS B, 1996, 380 (3-4) :296-302
[5]   The superconformal index of the (2,0) theory with defects [J].
Bullimore, Mathew ;
Kim, Hee-Cheol .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05)
[6]   Defects and quantum Seiberg-Witten geometry [J].
Bullimore, Mathew ;
Kim, Hee-Cheol ;
Koroteev, Peter .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05) :1-79
[7]   Elliptic quantum curves of 6d SO(N) theories [J].
Chen, Jin ;
Haghighat, Babak ;
Kim, Hee-Cheol ;
Lee, Kimyeong ;
Sperling, Marcus ;
Wang, Xin .
JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (03)
[8]   E-string quantum curve [J].
Chen, Jin ;
Haghighat, Babak ;
Kim, Hee-Cheol ;
Sperling, Marcus ;
Wang, Xin .
NUCLEAR PHYSICS B, 2021, 973
[9]   Supersymmetric partition functions and the three-dimensional A-twist [J].
Closset, Cyril ;
Kim, Heeyeon ;
Willett, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03)
[10]   5d partition functions with a twist [J].
Crichigno, P. Marcos ;
Jain, Dharmesh ;
Willett, Brian .
JOURNAL OF HIGH ENERGY PHYSICS, 2018, (11)