Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT

被引:5
作者
Dadgar, Meysam [1 ]
Verstraete, Amaryllis [1 ]
Maebe, Jens [1 ]
D'Asseler, Yves [1 ]
Vandenberghe, Stefaan [1 ]
机构
[1] Univ Ghent, Dept Elect & Informat Syst, Med Image & Signal Proc, C Heymanslaan 10, Ghent, Belgium
关键词
Time of flight; Contrast recovery coefficient; Background variability; Contrast to noise ratio; Deep learning; GE Omni Legend; PERFORMANCE; DETECTORS;
D O I
10.1186/s40658-024-00688-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundThis study investigates the integration of Artificial Intelligence (AI) in compensating the lack of time-of-flight (TOF) of the GE Omni Legend PET/CT, which utilizes BGO scintillation crystals.MethodsThe current study evaluates the image quality of the GE Omni Legend PET/CT using a NEMA IQ phantom. It investigates the impact on imaging performance of various deep learning precision levels (low, medium, high) across different data acquisition durations. Quantitative analysis was performed using metrics such as contrast recovery coefficient (CRC), background variability (BV), and contrast to noise Ratio (CNR). Additionally, patient images reconstructed with various deep learning precision levels are presented to illustrate the impact on image quality.ResultsThe deep learning approach significantly reduced background variability, particularly for the smallest region of interest. We observed improvements in background variability of 11.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 17.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 14.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for low, medium, and high precision deep learning, respectively. The results also indicate a significant improvement in larger spheres when considering both background variability and contrast recovery coefficient. The high precision deep learning approach proved advantageous for short scans and exhibited potential in improving detectability of small lesions. The exemplary patient study shows that the noise was suppressed for all deep learning cases, but low precision deep learning also reduced the lesion contrast (about -30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}), while high precision deep learning increased the contrast (about 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}).ConclusionThis study conducted a thorough evaluation of deep learning algorithms in the GE Omni Legend PET/CT scanner, demonstrating that these methods enhance image quality, with notable improvements in CRC and CNR, thereby optimizing lesion detectability and offering opportunities to reduce image acquisition time.
引用
收藏
页数:14
相关论文
共 28 条
[21]   Performance Evaluation of the uEXPLORER Total-Body PET/CT Scanner Based on NEMA NU 2-2018 with Additional Tests to Characterize PET Scanners with a Long Axial Field of View [J].
Spencer, Benjamin A. ;
Berg, Eric ;
Schmall, Jeffrey P. ;
Omidvari, Negar ;
Leung, Edwin K. ;
Abdelhafez, Yasser G. ;
Tang, Songsong ;
Deng, Zilin ;
Dong, Yun ;
Lv, Yang ;
Bao, Jun ;
Liu, Weiping ;
Li, Hongdi ;
Jones, Terry ;
Badawi, Ramsey D. ;
Cherry, Simon R. .
JOURNAL OF NUCLEAR MEDICINE, 2021, 62 (06) :861-870
[22]   Benefit of Improved Performance with State-of-the Art Digital PET/CT for Lesion Detection in Oncology [J].
Surti, Suleman ;
Viswanath, Varsha ;
Daube-Witherspoon, Margaret E. ;
Conti, Maurizio ;
Casey, Michael E. ;
Karp, Joel S. .
JOURNAL OF NUCLEAR MEDICINE, 2020, 61 (11) :1684-1690
[23]   Recent developments in time-of-flight PET [J].
Vandenberghe, S. ;
Mikhaylova, E. ;
D'Hoe, E. ;
Mollet, P. ;
Karp, J. S. .
EJNMMI PHYSICS, 2016, 3 (01)
[24]   State of the art in total body PET [J].
Vandenberghe, Stefaan ;
Moskal, Pawel ;
Karp, Joel S. .
EJNMMI PHYSICS, 2020, 7 (01)
[25]   Artificial Intelligence for Response Evaluation With PET/CT [J].
Wei, Lise ;
Naqa, Issam .
SEMINARS IN NUCLEAR MEDICINE, 2020, 51 (02) :157-169
[26]   Performance Characteristics of a New-Generation Digital Bismuth Germanium Oxide PET/CT System, Omni Legend 32, According to NEMA NU 2-2018 Standards [J].
Yamagishi, Shin ;
Miwa, Kenta ;
Kamitaki, Shun ;
Anraku, Kouichi ;
Sato, Shun ;
Yamao, Tensho ;
Kubo, Hitoshi ;
Miyaji, Noriaki ;
Oguchi, Kazuhiro .
JOURNAL OF NUCLEAR MEDICINE, 2023, 64 (12) :1990-1997
[27]   A method to assess image quality for Low-dose PET: analysis of SNR, CNR, bias and image noise [J].
Yan, Jianhua ;
Schaefferkoetter, Josh ;
Conti, Maurizio ;
Townsend, David .
CANCER IMAGING, 2016, 16
[28]   Detectors in positron emission tomography [J].
Zatcepin, Artem ;
Ziegler, Sibylle I. .
ZEITSCHRIFT FUR MEDIZINISCHE PHYSIK, 2023, 33 (01) :4-12