Assessing the deep learning based image quality enhancements for the BGO based GE omni legend PET/CT

被引:5
作者
Dadgar, Meysam [1 ]
Verstraete, Amaryllis [1 ]
Maebe, Jens [1 ]
D'Asseler, Yves [1 ]
Vandenberghe, Stefaan [1 ]
机构
[1] Univ Ghent, Dept Elect & Informat Syst, Med Image & Signal Proc, C Heymanslaan 10, Ghent, Belgium
关键词
Time of flight; Contrast recovery coefficient; Background variability; Contrast to noise ratio; Deep learning; GE Omni Legend; PERFORMANCE; DETECTORS;
D O I
10.1186/s40658-024-00688-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundThis study investigates the integration of Artificial Intelligence (AI) in compensating the lack of time-of-flight (TOF) of the GE Omni Legend PET/CT, which utilizes BGO scintillation crystals.MethodsThe current study evaluates the image quality of the GE Omni Legend PET/CT using a NEMA IQ phantom. It investigates the impact on imaging performance of various deep learning precision levels (low, medium, high) across different data acquisition durations. Quantitative analysis was performed using metrics such as contrast recovery coefficient (CRC), background variability (BV), and contrast to noise Ratio (CNR). Additionally, patient images reconstructed with various deep learning precision levels are presented to illustrate the impact on image quality.ResultsThe deep learning approach significantly reduced background variability, particularly for the smallest region of interest. We observed improvements in background variability of 11.8%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, 17.2%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and 14.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document} for low, medium, and high precision deep learning, respectively. The results also indicate a significant improvement in larger spheres when considering both background variability and contrast recovery coefficient. The high precision deep learning approach proved advantageous for short scans and exhibited potential in improving detectability of small lesions. The exemplary patient study shows that the noise was suppressed for all deep learning cases, but low precision deep learning also reduced the lesion contrast (about -30%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}), while high precision deep learning increased the contrast (about 10%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}).ConclusionThis study conducted a thorough evaluation of deep learning algorithms in the GE Omni Legend PET/CT scanner, demonstrating that these methods enhance image quality, with notable improvements in CRC and CNR, thereby optimizing lesion detectability and offering opportunities to reduce image acquisition time.
引用
收藏
页数:14
相关论文
共 28 条
[1]  
AMIDE, Amide's a Medical Imaging Data Examiner
[2]   Fundamentals of PET and PET/CT imaging [J].
Basu, Sandip ;
Kwee, Thomas C. ;
Surti, Suleman ;
Akin, Esma A. ;
Yoo, Don ;
Alavi, Abass .
PET/CT APPLICATIONS IN NON-NEOPLASTIC CONDITIONS, 2011, 1228 :1-18
[3]   Evaluation of a clinical TOF-PET detector design that achieves ≤100 ps coincidence time resolution [J].
Cates, Joshua W. ;
Levin, Craig S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (11)
[4]   Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators [J].
Dadgar, M. ;
Parzych, S. ;
Baran, J. ;
Chug, N. ;
Curceanu, C. ;
Czerwinski, E. ;
Dulski, K. ;
Elyan, K. ;
Gajos, A. ;
Hiesmayr, B. C. ;
Kaplon, L. ;
Klimaszewski, K. ;
Konieczka, P. ;
Korcyl, G. ;
Kozik, T. ;
Krzemien, W. ;
Kumar, D. ;
Niedzwiecki, S. ;
Panek, D. ;
Perez del Rio, E. ;
Raczynski, L. ;
Sharma, S. ;
Shivani, S. ;
Shopa, R. Y. ;
Skurzok, M. ;
Stepien, E. L. ;
Tayefi Ardebili, F. ;
Tayefi Ardebili, K. ;
Vandenberghe, S. ;
Wislicki, W. ;
Moskal, P. .
EJNMMI PHYSICS, 2023, 10 (01)
[5]   A simulation study of the system characteristics for a long axial FOV PET design based on monolithic BGO flat panels compared with a pixelated LSO cylindrical design [J].
Dadgar, Meysam ;
Maebe, Jens ;
Abi Akl, Maya ;
Vervenne, Boris ;
Vandenberghe, Stefaan .
EJNMMI PHYSICS, 2023, 10 (01)
[6]   Artificial intelligence with deep learning in nuclear medicine and radiology [J].
Decuyper, Milan ;
Maebe, Jens ;
Van Holen, Roel ;
Vandenberghe, Stefaan .
EJNMMI PHYSICS, 2021, 8 (01)
[7]  
Du JW, 2022, IEEE T RADIAT PLASMA, V6, P522, DOI [10.1109/trpms.2021.3096534, 10.1109/TRPMS.2021.3096534]
[8]   Performance comparison of dual-ended readout depth-encoding PET detectors based on BGO and LYSO crystals [J].
Du, Junwei ;
Arino-Estrada, Gerard ;
Bai, Xiaowei ;
Cherry, Simon R. .
PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (23)
[9]  
gehealthcare, GE Omni Legend
[10]   Utility of PET for Radiotherapy Treatment Planning [J].
Gill, Beant S. ;
Pai, Sarah S. ;
McKenzie, Stacey ;
Beriwal, Sushil .
PET CLINICS, 2015, 10 (04) :541-554