External Li supply reshapes Li deficiency and lifetime limit of batteries

被引:27
作者
Chen, Shu [1 ,2 ]
Wu, Guanbin [1 ,2 ]
Jiang, Haibo [1 ,2 ]
Wang, Jifeng [1 ]
Chen, Tiantian [1 ,2 ]
Han, Chenyang [1 ,2 ]
Wang, Wenwen [1 ,2 ]
Yang, Rongchen [1 ,2 ]
Zhao, Jiahua [3 ]
Tang, Zhihang [4 ]
Gong, Xiaocheng [1 ,2 ]
Li, Chuanfa [1 ,2 ]
Zhu, Mengyao [1 ,2 ]
Zhang, Kun [1 ,2 ]
Xu, Yifei [1 ]
Wang, Ying [1 ]
Hu, Zhe [5 ]
Chen, Peining [1 ,2 ]
Wang, Bingjie [1 ,2 ]
Zhang, Kai [3 ]
Xia, Yongyao [6 ,7 ]
Peng, Huisheng [1 ,2 ]
Gao, Yue [1 ,2 ]
机构
[1] Fudan Univ, Inst Fiber Mat & Devices, Dept Macromol Sci, State Key Lab Mol Engn Polymers, Shanghai, Peoples R China
[2] Fudan Univ, Res Ctr AI Polymer Sci, Collaborat Innovat Ctr Chem Energy Mat, Lab Adv Mat, Shanghai, Peoples R China
[3] Nankai Univ, Coll Chem, Renewable Energy Convers & Storage Ctr, Key Lab Adv Energy Mat Chem, Tianjin, Peoples R China
[4] Hunan Inst Engn, Xiangtan, Peoples R China
[5] Shenzhen Univ, Coll Mat Sci & Engn, Guangdong Prov Key Lab Serv Safety New Energy Mat, Shenzhen, Peoples R China
[6] Fudan Univ, Inst New Energy, Dept Chem, Shanghai, Peoples R China
[7] Fudan Univ, Inst New Energy, Shanghai Key Lab Mol Catalysis & Innovat Mat, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-ENERGY; LITHIUM; PRELITHIATION;
D O I
10.1038/s41586-024-08465-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Lithium (Li) ions are central to the energy storing functionality of rechargeable batteries1. Present technology relies on sophisticated Li-inclusive electrode materials to provide Li ions and exactingly protect them to ensure a decent lifetime2. Li-deficient materials are thus excluded from battery design, and the battery fails when active Li ions are consumed3. Our study breaks this limit by means of a cell-level Li supply strategy. This involves externally adding an organic Li salt into an assembled cell, which decomposes during cell formation, liberating Li ions and expelling organic ligands as gases. This non-invasive and rapid process preserves cell integrity without necessitating disassembly. We leveraged machine learning to discover such functional salts and identified lithium trifluoromethanesulfinate (LiSO2CF3) with optimal electrochemical activity, potential, product formation, electrolyte solubility and specific capacity. As a proof-of-concept, we demonstrated a 3.0 V, 1,192 Wh kg-1 Li-free cathode, chromium oxide, in the anode-less cell, as well as an organic sulfurized polyacrylonitrile cathode incorporated in a 388 Wh kg-1 pouch cell with a 440-cycle life. These systems exhibit improved energy density, enhanced sustainability and reduced cost compared with conventional Li-ion batteries. Furthermore, the lifetime of commercial LiFePO4 batteries was extended by at least an order of magnitude. With repeated external Li supplies, a commercial graphite|LiFePO4 cell displayed a capacity retention of 96.0% after 11,818 cycles.
引用
收藏
页码:676 / 683
页数:21
相关论文
共 42 条
[1]   Mechanistic Insights into the Pre-Lithiation of Silicon/Graphite Negative Electrodes in "Dry State" and After Electrolyte Addition Using Passivated Lithium Metal Powder [J].
Baermann, Peer ;
Mohrhardt, Marvin ;
Frerichs, Joop Enno ;
Helling, Malina ;
Kolesnikov, Aleksei ;
Klabunde, Sina ;
Nowak, Sascha ;
Hansen, Michael Ryan ;
Winter, Martin ;
Placke, Tobias .
ADVANCED ENERGY MATERIALS, 2021, 11 (25)
[2]   Cycle-life and degradation mechanism of LiFePO4-based lithium-ion batteries at room and elevated temperatures [J].
Cao, Wenpeng ;
Li, Juan ;
Wu, Zhengbin .
IONICS, 2016, 22 (10) :1791-1799
[3]   RAMAN-SPECTRA OF CF3SCF3, CF3S(O)CF3 AND CF3SSCF3 [J].
CARTER, HA ;
WANG, CSC ;
SHREEVE, JM .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 1973, A 29 (07) :1479-1491
[4]   Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries [J].
Chen, Hao ;
Yang, Yufei ;
Boyle, David T. ;
Jeong, You Kyeong ;
Xu, Rong ;
de Vasconcelos, Luize Scalco ;
Huang, Zhuojun ;
Wang, Hansen ;
Wang, Hongxia ;
Huang, Wenxiao ;
Li, Huiqiao ;
Wang, Jiangyan ;
Gu, Hanke ;
Matsumoto, Ryuhei ;
Motohashi, Kazunari ;
Nakayama, Yuri ;
Zhao, Kejie ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (08) :790-798
[5]   Promise and reality of post-lithium-ion batteries with high energy densities [J].
Choi, Jang Wook ;
Aurbach, Doron .
NATURE REVIEWS MATERIALS, 2016, 1 (04)
[6]   Weakly Solvating Solution Enables Chemical Prelithiation of Graphite-SiOx Anodes for High-Energy Li-Ion Batteries [J].
Choi, Jinkwan ;
Jeong, Hyangsoo ;
Jang, Juyoung ;
Jeon, A-Re ;
Kang, Inyeong ;
Kwon, Minhyung ;
Hong, Jihyun ;
Lee, Minah .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (24) :9169-9176
[7]   Liquid Ammonia Chemical Lithiation: An Approach for High-Energy and High-Voltage Si-Graphite|Li1+xNi0.5Mn1.5O4 Li-Ion Batteries [J].
Dose, Wesley M. ;
Blauwkamp, James ;
Piernas-Munoz, Maria Jose ;
Bloom, Ira ;
Rui, Xue ;
Klie, Robert F. ;
Senguttuvan, Premkumar ;
Johnson, Christopher S. .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) :5019-5028
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   Rechargeable Batteries of the Future-The State of the Art from a BATTERY 2030+Perspective [J].
Fichtner, Maximilian ;
Edstrom, Kristina ;
Ayerbe, Elixabete ;
Berecibar, Maitane ;
Bhowmik, Arghya ;
Castelli, Ivano E. ;
Clark, Simon ;
Dominko, Robert ;
Erakca, Merve ;
Franco, Alejandro A. ;
Grimaud, Alexis ;
Horstmann, Birger ;
Latz, Arnulf ;
Lorrmann, Henning ;
Meeus, Marcel ;
Narayan, Rekha ;
Pammer, Frank ;
Ruhland, Janna ;
Stein, Helge ;
Vegge, Tejs ;
Weil, Marcel .
ADVANCED ENERGY MATERIALS, 2022, 12 (17)
[10]   Unsupervised Learning Methods for Molecular Simulation Data [J].
Glielmo, Aldo ;
Husic, Brooke E. ;
Rodriguez, Alex ;
Clementi, Cecilia ;
Noe, Frank ;
Laio, Alessandro .
CHEMICAL REVIEWS, 2021, 121 (16) :9722-9758